分享
[1]靳星宇,盛志伟,杜 洁.基于并行多重注意力机制的脑电降噪网络[J].成都信息工程大学学报,2026,41(01):7-16.[doi:10.16836/j.cnki.jcuit.2026.01.002]
 JIN Xingyu,SHENG Zhiwei,DU Jie.A EEG Noise Reduction Network based on Parallel Multiple Attention Mechanisms[J].Journal of Chengdu University of Information Technology,2026,41(01):7-16.[doi:10.16836/j.cnki.jcuit.2026.01.002]
点击复制

基于并行多重注意力机制的脑电降噪网络

参考文献/References:

[1] Borhani S,Kilmarx J,Saffo D,et al.Optimizing prediction model for a noninvasive brain-computer interface platform using channel selection,classification,and regression[J].IEEE journal of biomedical and health informatics,2019,23(6):2475-2482.
[2] Radüntz T,Scouten J,Hochmuth O,et al.Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features[J].Journal of neural engineering,2017,14(4):046004.
[3] Urigüen J A,Garcia-Zapirain B.EEG artifact removal——state-of-the-art and guidelines[J].Journal of neural engineering,2015,12(3):031001.
[4] Arpaia P,Moccaldi N,Prevete R,et al.A wearable EEG instrument for real-time frontal asymmetry monitoring in worker stress analysis[J].IEEE Transactions on Instrumentation and Measurement,2020,69(10):8335-8343.
[5] Liu A,Liu Q,Zhang X,et al.Muscle artifact removal toward mobile SSVEP-based BCI:A comparative study[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-12.
[6] Klados M A,Papadelis C,Braun C,et al.REG-ICA:a hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts[J].Biomedical Signal Processing and Control,2011,6(3):291-300.
[7] Sweeney K T,Ward T E,McLoone S F.Artifact removal in physiological signals——Practices and possibilities[J].IEEE transactions on information technology in biomedicine,2012,16(3):488-500.
[8] Marque C,Bisch C,Dantas R,et al.Adaptive filtering for ECG rejection from surface EMG recordings[J].Journal of electromyography and kinesiology,2005,15(3):310-315.
[9] Somers B,Francart T,Bertrand A.A generic EEG artifact removal algorithm based on the multi-channel Wiener filter[J].Journal of neural engineering,2018,15(3):036007.
[10] Lakshmi K G A,Surling S N N,Sheeba O.A novel approach for the removal of artifacts in EEG signals[C].2017 International Conference on Wireless Communications,Signal Processing and Networking(WiSPNET).IEEE,2017:2595-2599.
[11] Somers B,Bertrand A.Removal of eye blink artifacts in wireless EEG sensor networks using reduced-bandwidth canonical correlation analysis[J].Journal of neural engineering,2016,13(6):066008.
[12] Borga M,Friman O,Lundberg P,et al.A canonical correlation approach to exploratory data analysis in fMRI[C].Proceedings of the ISMRM Annual Meeting,Honolulu,Hawaii.2002.
[13] Soomro M H,Badruddin N,Yusoff M Z,et al.Automatic eye-blink artifact removal method based on EMD-CCA[C].2013 ICME International Conference on Complex Medical Engineering.IEEE,2013:186-190.
[14] Lin J,Zhang A.Fault feature separation using wavelet-ICA filter[J].NDT & e International,2005,38(6):421-427.
[15] Soomro M H,Badruddin N,Yusoff M Z,et al.A method for automatic removal of eye blink artifacts from EEG based on EMD-ICA[C].2013 IEEE 9th international colloquium on signal processing and its applications.IEEE,2013:129-134.
[16] Yang Banghua,Duan Kaiwen,Fan Chengcheng,et al.Automatic ocular artifacts removal in EEG using deep learning[J].Biomedical Signal Processing and Control, 2018,43:148-158.
[17] Nagar S,Kumar A,Swamy M N S.Orthogonal features-based EEG signal denoising using fractionally compressed autoencoder[J].Signal Processing,2021, 188:108225.
[18] Sawangjai P,Trakulruangroj M,Boonnag C,et al.EEGANet:Removal of ocular artifacts from the EEG signal using generative adversarial networks[J].IEEE Journal of Biomedical and Health Informatics, 2022,26(10):4913-4924.
[19] Sun W,Su Y,Wu X,et al.A novel end-to-end 1D-ResCNN model to remove artifact from EEG signals[J].Neurocomputing,2020,404:108-121.
[20] Zhang H,Zhao M,Wei C,et al.EEGdenoiseNet:A benchmark dataset for deep learning solutions of EEG denoising[J].Journal of Neural Engineering,2021,18(5):056057.
[21] Zhang H,Wei C,Zhao M,et al.A novel convolutional neural network model to remove muscle artifacts from EEG[C].ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2021:1265-1269.
[22] Wang W,Li B,Wang H.A novel end-to-end network based on a bidirectional GRU and a self-attention mechanism for denoising of electroencephalography signals[J].Neuroscience,2022,505:10-20.
[23] Pu X,Yi P,Chen K,et al.EEGDnet:Fusing non-local and local self-similarity for EEG signal denoising with transformer[J].Computers in Biology and Medicine,2022,151:106248.
[24] Gao T,Chen D,Tang Y,et al.EEG reconstruction with a dual-scale CNN-LSTM model for deep artifact removal[J].IEEE Journal of Biomedical and Health Informatics,2022,27(3):1283-1294.
[25] 尹瑾,刘爱萍,李畅,等.基于并行 CNN 和 Transformer 的脑电降噪网络[J].Journal of Signal Processing,2023,39(8).
[26] Yin J,Liu A,Li C,et al.A GAN guided parallel CNN and transformer network for EEG denoising[J].IEEE Journal of Biomedical and Health Informatics,2023.
[27] Kitaev N,Kaiser ,Levskaya A.Reformer:The efficient transformer[J].arXiv preprint arXiv,2020:2001.04451.
[28] Goldberger A L,Amaral L A N,Glass L,et al.PhysioBank,PhysioToolkit,and PhysioNet:components of a new research resource for complex physiologic signals[J].circulation,2000,101(23):215-220.
[29] Moody G B,Mark R G.The impact of the MIT-BIH arrhythmia database[J].IEEE engineering in medicine and biology magazine,2001,20(3):45-50.
[30] Klados M A,Bamidis P D.A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques[J].Data in brief,2016,8:1004-1006.
[31] Elbert T,Lutzenberger W,Rockstroh B,et al.Removal of ocular artifacts from the EEG——a biophysical approach to the EOG[J].Electroencephalography and clinical neurophysiology,1985,60(5):455-463.
[32] Saini M,Satija U,Upadhayay M D.Wavelet based waveform distortion measures for assessment of denoised EEG quality with reference to noise-free EEG signal[J].IEEE Signal Processing Letters,2020,27:1260-1264.

相似文献/References:

[1]王家珉,李田家,顾桃峰,等.一种基于深度卷积神经网络的电磁干扰识别与抑制方法[J].成都信息工程大学学报,2024,39(01):43.[doi:10.16836/j.cnki.jcuit.2024.01.008]
 WANG Jiamin,LI Tianjia,GU Taofeng,et al.A Method of Electromagnetic Interference Identification and Suppression based on Deep Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2024,39(01):43.[doi:10.16836/j.cnki.jcuit.2024.01.008]

备注/Memo

收稿日期:2024-07-15
基金项目:国家重点研发计划“网络空间安全治理”重点专项课题(2022YFB3103103); 四川省重点研发计划项目(2022YFS0571、2021YFSY0012、2021JDRC0046、2020YFG03077)
通信作者:盛志伟.E-mail:7782988@qq.com

更新日期/Last Update: 2026-02-28