分享
[1]刘传真,刘贵林,索 望.基于GAT-GRU的僵尸网络检测方法[J].成都信息工程大学学报,2026,41(01):24-31.[doi:10.16836/j.cnki.jcuit.2026.01.004]
 LIU Chuanzhen,LIU Guilin,SUO Wang.Botnet Detection Method based on GAT-GRU[J].Journal of Chengdu University of Information Technology,2026,41(01):24-31.[doi:10.16836/j.cnki.jcuit.2026.01.004]
点击复制

基于GAT-GRU的僵尸网络检测方法

参考文献/References:

[1] 国家计算机网络应急技术处理协调中心(CNCERT/CC).2020年中国互联网网络安全报告[EB/OL]. https://www.cert.org.cn/publish/main/8/2021/20210721130944504525772/20210721130944504525772_.html,2021-07-21.
[2] Javier Velasco-Mata,Víctor González-Castro.Efficient Detection of Botnet Traffic by features selection and DecisionTrees[EB/OL]. https://arxiv.org/abs/2107.02896,2021-06-30.
[3] 于洋,陈丹伟.基于卷积神经网络的僵尸网络检测[J].计算机应用与软件,2022,39(5):336-341.
[4] 卢法权.基于深度学习的僵尸网络检测技术研究[D].南京:南京邮电大学,2021.
[5] Jagadeesan S,Amutha B.An efficient botnet detection with the enhanced support vector neural network[J].Measurement,2021,176:109140.
[6] Jeeyung K,Alex S, Jinoh K,et al.Improving Botnet Detection with Recurrent Neural Network and Transfer Learning[EB/OL]. https://arxiv.org/abs/2104.12602,2021-4-26.
[7] 谭越,邹福泰.基于ResNet和BiLSTM的僵尸网络检测方法[J].通信技术,2019,52(12):2975-2981.
[8] Alharbi A,Alsubhi K.Botnet detection approach using graph-based machine learning[J].IEEE Access,2021,9:99166-99180.
[9] Padmavathi B,Muthukumar B.An efficient botnet detection approach based on feature learning and classification[J].Journal of Control and Decision,2022,10(1):1-14.
[10] Wang W,Shang Y,He Y,et al.BotMark:Automated botnet detection with hybrid analysis of flow-based and graph-based traffic behaviors[J].Information Sciences,2020,511:284-296.
[11] Long C,Xiao X,Wan W,et al.Botnet Detection Based on Flow Summary and Graph Sampling with Machine Learning[C].2021 International Conference on Computer Engineering and Application(ICCEA).IEEE,2021:309-317.
[12] Wang J,Paschalidis I C.Botnet Detection using Social Graph Analysis[EB/OL]. https://arxiv.org/abs/1503.02337,2015-03-08.
[13] Abou D A,Salahuddin M A,Limam N,et al.BotChase:Graph-based bot detection using machine learning[J].IEEE Transactions on Network and Service Management,2020,17(1):15-29.
[14] Chowdhury S,Khanzadeh M,Akula R,et al.Botnet detection using graph-based feature clustering[J].Journal of BigData,2017,4:14.
[15] Zhou Jiawei,Xu Zhiying,Alexander M Rush,et al.Automating Botnet Detection with Graph Neural Networks[EB/OL]. https://arxiv.org/abs/2003.06344,2020-03-14.
[16] Yang Y,Wang L.LGANet:local graph attention network for peer-to-peer botnet detection[C].2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication(CTISC).IEEE,2021:31-36.
[17] Julie Choi.Personalized PageRank Graph Attention Networks[EB/OL]. https://arxiv.org/abs/2205.14259,2022-05-27.
[18] Kyunghyun Cho, Bart van Merrienboer,Caglar Gulcehre,et al.Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[EB/OL]. https://arxiv.org/abs/1406.1078,2014-06-03.
[19] E.Biglar Beigi,H.Hadian Jazi,N.Stakhanova,et al,Towards effective feature selection in machine learning-based botnet detection approaches[C].2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication(CTISC).IEEE,2021:247-255.

相似文献/References:

[1]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
 GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(01):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]

备注/Memo

收稿日期:2024-07-01
基金项目:国家242信息安全计划资助项目(2021A063)
通信作者:索望.mail:suowang@cuit.edu.cn

更新日期/Last Update: 2026-02-28