分享
[1]李鑫洁,吴 震.基于注意力机制和卷积神经网络的网络流量分类[J].成都信息工程大学学报,2026,41(01):39-46.[doi:10.16836/j.cnki.jcuit.2026.01.006]
 LI Xinjie,WU Zhen.Network Traffic Classification based on Attention Mechanism and Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2026,41(01):39-46.[doi:10.16836/j.cnki.jcuit.2026.01.006]
点击复制

基于注意力机制和卷积神经网络的网络流量分类

参考文献/References:

[1] 中国互联网络信息中心发布第52次《中国互联网络发展状况统计报告》[J].国家图书馆学刊,2023,32(5):13.
[2] Azab A,Khasawneh M,Alrabaee S,et al.Network traffic classification:Techniques,datasets,and challenges[J].Digital Communications and Networks,2024,10(3):676-692.
[3] Khandait P,Hubballi N,Mazumdar B.Efficient keyword matching for deep packet inspection based network traffic classification[C].proceedings of the 2020 International Conference on COMmunication Systems & NETworkS(COMSNETS).2020:567-570.
[4] Moore A W,Zuev D.Internet traffic classification using bayesian analysis techniques [C].Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and modeling of computer systems.Banff,Alberta,Canada; Association for Computing Machinery.2005:50-60.
[5] Wang Z.The Applications of Deep Learning on Traffic Identification[C/OL].Black Hat USA Briefings,2015.
[6] Wang W,Zhu M,Wang J,et al.End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C].proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics(ISI).2017:43-48.
[7] Lotfollahi M,Jafari Siavoshani M,Shirali Hossein Zade R,et al.Deep packet: A novel approach for encrypted traffic classification using deep learning[J].Soft Computing,2020,24(3):1999-2012.
[8] Li R,Xiao X,Ni S,et al.Byte Segment Neural Network for Network Traffic Classification[C].proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service(IWQoS),2018:1-10.
[9] Bu Z,Zhou B,Cheng P,et al.Encrypted Network Traffic Classification Using Deep and Parallel Network-in-Network Models [J].IEEE Access,2020,8:132950-132959.
[10] Lin X,Xiong G,Gou G,et al.ET-BERT:A Contextualized Datagram Representation with Pre-training Transformers for Encrypted Traffic Classification [C].Proceedings of the ACM Web Conference 2022,2022:633-642.
[11] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[C].Advances in Neural Information Processing Systems 30,2017:6000-6010.
[12] Han K,Wang Y,Tian Q,et al.Ghostnet:More features from cheap operations[C].proceedings of the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.2020:1580-1589.
[13] Stratosphere.Stratosphere Laboratory Datasets [Z].2015.
[14] Wang W,Zhu M,Zeng X,et al.Malware traffic classification using convolutional neural network for representation learning[C].In2017 International conference on information networking(ICOIN).2017:712-717.
[15] Lopez-Martin M,Carro B,Sanchez-Esguevillas A.et al.Network traffic classifier with convolutional and recurrent neural networks for Internet of Things[J].IEEE Access,2017,5:18042-18050.
[16] He H Y,Yang Z G.Chen X N.PERT:Payload encoding representation from transformer for encrypted traffic classification[C].In Proceedings of the 2020 IEEE ITU Kaleidoscope:Industry-Driven Digital Transformation.2020:1-8.
[17] Liu C,He L,Xiong G,et al.Fs-net:A flow sequence network for encrypted traffic classification[C].In Proceedings of the IEEE INFOCOM 2019-IEEE Conference On Computer Communications.2019:1171-1179.

备注/Memo

收稿日期:2024-08-02
基金项目:四川省科技计划项目(2023YFG0292)

更新日期/Last Update: 2026-02-28