分享
[1]李 川,韩 斌,王树鸿.基于CSBD-XGBoost的入侵检测模型研究[J].成都信息工程大学学报,2026,41(01):47-54.[doi:10.16836/j.cnki.jcuit.2026.01.007]
 LI Chuan,HAN Bin,WANG Shuhong.Research on Intrusion Detection Model based on CSBD-XGBoost[J].Journal of Chengdu University of Information Technology,2026,41(01):47-54.[doi:10.16836/j.cnki.jcuit.2026.01.007]
点击复制

基于CSBD-XGBoost的入侵检测模型研究

参考文献/References:

[1] 姜来为,顾海洋,谢丽霞,等.机器学习在WSN入侵检测中的应用研究[J].西安电子科技大学学报,2024,51(4):206-225.
[2] Nisha T,Pramod,Dhanya.Insider Intrusion Detection Techniques:A State-of-the-Art Review[J].Journal Of Computer Information Systems,2024,64(1):106-123.
[3] Nitish A,Hanumanthappa J,Prakash,et al.On-Device Context-Aware Misuse Detection Framework For Heterogeneous Iot Edge[J].Applied Intelligence,2023,53(12):14792-14818.
[4] Halbouni Asmaa,G Teddy S,H Mohamed H,et al.CNN-LSTM:Hybrid Deep Neural Network for Network Intrusion Detection System[J].IEEE Access,2022,10:99837-99849.
[5] Jmila Houda,Mohamed I K.Adversarial Machine Learning For Network Intrusion Detection:A Comparative Study[J].Computer Networks,2022,214.
[6] 陈虹,李泓绪,金海波.多尺度卷积与双注意力机制融合的入侵检测方法[J].辽宁工程技术大学学报(自然科学版),2024,43(1):93-100.
[7] Tang Y,Gu L,Wang L.Deep Stacking Network for Intrusion Detection[J].Sensors,2022,22(1):25.
[8] Mohiuddin,Ghulam Z,Lin J,et al.Intrusion Detection Using Hybridized Meta-Heuristic Techniques With Weighted Xgboost Classifier[J].Expert Systems With Applications,2023,232.
[9] Devendiran,Ramkumar T,Anil,et al.Dugat-LSTM:Deep Learning Based Network Intrusion Detection System Using Chaotic Optimization Strategy[J].Expert Systems With Applications,2024,245.
[10] 马明艳,陈伟,吴礼发.基于CNN-BiLSTM网络的入侵检测方法[J].计算机工程与应用,2022,58(10):116-124.
[11] 孙红哲,王坚,王鹏,等.基于Attention-BiTCN的网络入侵检测方法[J].信息网络安全,2024,24(2):309-318.
[12] Sivasubramanian,Arrun D,Mithil B,et al.Feature Extraction And Anomaly Detection Using Different Autoencoders For Modeling Intrusion Detection Systems[J].Arabian Journal For Science And Engineering,2024,49:13061-13073.
[13] Qian Wang,Jiang Haiyang,Ren Jiadong,et al.An Intrusion Detection Algorithm Based On Joint Symmetric Uncertainty And Hyperparameter Optimized Fusion Neural Network[J].Expert Systems With Applications,2024,244.
[14] Li LiHua,Ramli A,Radius T,et al.STB:Synthetic Minority Oversampling Technique For Tree-Boosting Models For Imbalanced Datasets Of Intrusion Detection Systems[J].Peerj Computer Science,2023,9:1580.
[15] Ren Huajuan,Tang Yonghe,Dong Weiyu,et al.DUEN:Dynamic Ensemble Handling Class Imbalance In Network Intrusion Detection[J].Expert Systems With Applications,2023,229.
[16] Vibhute AD,Nakum V.Deep Learning-Based Network Anomaly Detection And Classification In An Imbalanced Cloud Environment.[J].Procedia Computer Science,2024,232:1636-1645.
[17] Qazi,Muhammad H Z,Tanveer,et al.HDLNIDS:Hybrid Deep-Learning-Based Network Intrusion Detection System[J].Applied Sciences-Basel,2023,13(8):4921.
[18] Alqahtani,Abdulrahman,Saad.Deep Convolutional Neural Network For Active Intrusion Detection And Protect Data From Passive Intrusion By Pascal Triangle[J].Wireless Personal Communications,2024,144:1-14.
[19] Qazi,Emad U H A,Abdulrazaq Z,et al.A One-Dimensional Convolutional Neural Network(1D-CNN)Based Deep Learning System for Network Intrusion Detection[J].Applied Sciences-Basel,2022,12(16):7986.
[20] Xu W,Jang-Jaccard J,Liu T,et al.Improved Bidirectional Gan-Based Approach For Network Intrusion Detection Using One-Class Classifier[J].Computers,2022,11(6):85.

备注/Memo

收稿日期:2025-06-20
基金项目:四川省国际科技创新合作/港澳台科技创新合作资助项目(2021YFH0076)
通信作者:韩斌.E-mail:hanbin@cuit.edu.cn

更新日期/Last Update: 2026-02-28