分享
[1]王树鸿,韩 斌,李 川,等.面向异质客户端的层相似度联邦学习优化[J].成都信息工程大学学报,2026,41(01):55-62.[doi:10.16836/j.cnki.jcuit.2026.01.008]
 WANG Shuhong,HAN Bin,LI Chuan,et al.Layer Similarity Optimization for Federated Learning towards Heterogeneous Clients[J].Journal of Chengdu University of Information Technology,2026,41(01):55-62.[doi:10.16836/j.cnki.jcuit.2026.01.008]
点击复制

面向异质客户端的层相似度联邦学习优化

参考文献/References:

[1] McMahan B,Moore E,Ramage D,et al.Communication-efficient learning of deep networks from decentralized data[C].Artificial intelligence and statistics.PMLR,2017:1273-1282.
[2] Li T,Sahu A K,Talwalkar A,et al.Federated Learning:Challenges,Methods,and Future Directions[J].IEEE SIGNAL PROCESSING MAGAZINE,2020,37(3):50-60.
[3] Wang Z,Xu H,Liu J,et al.Accelerating Federated Learning With Cluster Construction and Hierarchical Aggregation[J].IEEE TRANSACTIONS ON MOBILE COMPUTING,2023,22(7):3805-3822.
[4] Ye R,Xu M,Wang J,et al.Feddisco:Federated learning with discrepancy-aware collaboration[C].International Conference on Machine Learning.PMLR,2023:39879-39902.
[5] Pillutla K,Malik K,Mohamed A R,et al.Federated learning with partial model personalization[C].International Conference on Machine Learning.PMLR,2022:17716-17758.
[6] 孙艳华,史亚会,李萌,等.基于合作博弈和知识蒸馏的个性化联邦学习算法[J].电子与信息学报,2023,45(10):3702-3709.
[7] Wang C,Chen D,Mei J P,et al.SemCKD:Semantic Calibration for Cross-Layer Knowledge Distillation[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(6):6305-6319.
[8] Yang Z,Zhang Y,Zheng Y,et al.FedFed:Feature distillation against data heterogeneity in federated learning[J].Advances in Neural Information Processing Systems,2024,36.
[9] Wang H,Yurochkin M,Sun Y,et al.Federated learning with matched averaging[C].ICLR 2020,2020.
[10] Arivazhagan M G,Aggarwal V,Singh A K,et al.Federated learning with personalization layers[J].arXiv preprint arXiv:1912.00818,2019.
[11] Tan A Z,Yu H,Cui L,et al.Towards personalized federated learning[J].IEEE Transactions on Neural Networks and Learning Systems,2022,34(12):9587-9603.
[12] Li T,Sahu A K,Zaheer M,et al.Federated optimization in heterogeneous networks[J].Proceedings of Machine Learning and Systems,2020,2:429-450.
[13] Fallah A,Mokhtari A,Ozdaglar A.Personalized federated learning with theoretical guarantees:A model-agnostic meta-learning approach[C].Advances in Neural Information Processing Systems,2020:3557-3568.
[14] Zhang H,Li C,Dai W,et al.FedCR:personalized federated learning based on across-client common representation with conditional mutual information regularization[C].International Conference on Machine Learning.PMLR,2023:41314-41330.
[15] Chen H,Vikalo H.The Best of Both Worlds:Accurate Global and Personalized Models through Federated Learning with Data-Free Hyper-Knowledge Distillation[C].ICLR 2023,2023.
[16] Li X,Jiang M,Zhang X,et al.FedBN:Federated Learning on Non-IID Features via Local Batch Normalization[C].ICLR 2021,2021.
[17] Zhang J,Hua Y,Wang H,et al.Fedala:Adaptive local aggregation for personalized federated learning[C].Proceedings of the AAAI Conference on Artificial Intelligence.2023,37(9):11237-11244.
[18] Zhang X,Huang A,Fan L,et al.Probably approximately correct federated learning[J].arXiv preprint arXiv:2304.04641,2023.

备注/Memo

收稿日期:2024-09-18
基金项目:四川省国际科技创新合作/港澳台科技创新合作资助项目(2021YFH0076)
通信作者:韩斌.E-mail:hanbin@cuit.edu.cn

更新日期/Last Update: 2026-02-28