WANG Yanqi,CHEN-YANG Ruixue,LUO Yali,et al.Moisture Pathways and Sources Contribution Analyses of Extreme Rainfall in the Yangtze River Delta during the Meiyu Period[J].Journal of Chengdu University of Information Technology,2026,41(01):96-101.[doi:10.16836/j.cnki.jcuit.2026.01.013]
梅雨期长江三角洲地区极端降水的水汽路径和源地分析
- Title:
- Moisture Pathways and Sources Contribution Analyses of Extreme Rainfall in the Yangtze River Delta during the Meiyu Period
- 文章编号:
- 2096-1618(2026)01-0096-06
- Keywords:
- extreme rainfall; moisture transport; HYSPLIT; the meiyu period
- 分类号:
- P426
- 文献标志码:
- A
- 摘要:
- 为明确梅雨期长三角地区极端降水的水汽输送特征,基于拉格朗日轨迹追踪模型(HYSPLIT),分析1979-2021年梅雨期间极端降水事件的水汽输送通道和源地。结果表明:西太平洋副热带高压环流输送暖湿空气到长三角地区,给极端降水提供充足的水汽条件。携带水汽的空气块主要有5条运动路径,分别是自印度洋经孟加拉湾和中国南海、自南海经华南地区、自太平洋经中国南海、自太平洋经中国黄海,以及自里海附近经欧亚大陆,最终到达降水区。将相关水汽源地划分为6个,中国南海贡献了极端降水过程26.4%的水汽,是最重要的水汽源区; 其次是太平洋地区,水汽贡献率为22.2%; 中国东部、孟加拉湾、印度洋和亚欧大陆中部地区也为极端降水贡献了部分水汽,分别为14%、13.9%、11.9%和11.7%。
- Abstract:
- To study the characteristics of moisture transport associated with extreme precipitation in the YRD region during the Meiyu period, the moisture pathways and sources of extreme precipitation events during the Meiyu period(1979-2021) are analyzed based on the Lagrangian trajectory tracking model(HYSPLIT). The results show that: the western Pacific subtropical high circulation transported warm and humid air into the YRD region, providing sufficient water vapor conditions for extreme precipitation. There are five trajectories to the YRD region, respectively from the Indian Ocean, via the South China Sea, from the Pacific Ocean via the South China Sea, from the Pacific Ocean via the Yellow Sea of China, and from the vicinity of the Caspian Sea through the Eurasian continent, eventually reaching the precipitation area. For the six moisture source areas, the SCS contributes 26.4% of the moisture for the extreme precipitation process, which is the most important moisture source area, followed by the Pacific Ocean, with the contribution of 22.2%, and eastern China, the Bay of Bengal, the Indian Ocean, and the central part of the Asian-European continent also contribute some of the water vapor for the extreme precipitation, with 14%, 13.9%, 11.9%, and 11.7%, respectively.
参考文献/References:
[1] 姚飞,杨秀芹.江淮流域梅雨过程识别及梅雨期分级降水时空特征[J].地理科学进展,2023,42(1):145-160.
[2] Ding Y,Chan J C L.The East Asian summer monsoon:an overview[J].Meteorology and Atmospheric Physics,2005,89(1-4):117-142.
[3] Brubaker K L,Entekhabi D,Eagleson P S.Estimation of Continental Precipitation Recycling[J].Journal of Climate,1993,6(6):1077-1089.
[4] Trenberth K E.Atmospheric Moisture Recycling:Role of Advection and Local Evaporation[J].Journal of Climate,1999,12(5):1368-1381.
[5] 朱乾根,林锦瑞,寿绍文,等.天气学原理和方法[M].4版.北京:气象出版社,2007.
[6] Sampe T,Xie S P.Large-Scale Dynamics of the Meiyu-Baiu Rainband:Environmental Forcing by the Westerly Jet[J].Journal of Climate,2010,23(1),113-114.
[7] Zhou T,Yu R.Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J].Journal of Geophysical Research:Atmospheres,2005,110(D8):D08104.
[8] Takaya Y,Ishikawa I,Kobayashi C,et al.Enhanced Meiyu-Baiu Rainfall in Early Summer 2020:Aftermath of the 2019 Super IOD Event[J].Geophysical Research Letters,2020,47(22):e2020GL090671.
[9] 刘芸芸,王永光,柯宗建.2020年夏季我国气候异常特征及成因分析[J].气象,2021,47(1):117-126.
[10] 孙思远,管兆勇,金大超.江淮地区夏季极端日降水事件变化特征及其与Rossby波活动的联系[J].大气科学,2022,46(1):15-26.
[11] Sun B,Wang H.Water Vapor Transport Paths and Accumulation during Widespread Snowfall Events in Northeastern China[J].Journal of Climate,2013,26(13):4550-4566.
[12] Tan Y,Yang S,Zwiers F,et al.Moisture budget analysis of extreme precipitation associated with different types of atmospheric rivers over western North America[J].Climate Dynamics,2022,58(3):793-809.
[13] Sodemann H,Schwierz C,Wernli H.Interannual variability of Greenland winter precipitation sources:Lagrangian moisture diagnostic and North Atlantic Oscillation influence[J].Journal of Geophysical Research:Atmospheres,2008,113(D3).
[14] Jana S,Rajagopalan B,Alexander M A,et al.Understanding the Dominant Sources and Tracks of Moisture for Summer Rainfall in the Southwest United States[J].Journal of Geophysical Research:Atmospheres,2018,123(10):4850-4870.
[15] Huang Y,Cui X.Moisture sources of an extreme precipitation event in Sichuan,China,based on the Lagrangian method[J].Atmospheric Science Letters,2015,16(2):177-183.
[16] Chen Y R,Liu B,Cai X,et al.Moisture transport and sources of an extreme rainfall event of June 2021 in southern Xinjiang,China[J].Advances in Climate Change Research,2022,13(6):843-850.
[17] 江志红,任伟,刘征宇,等.基于拉格朗日方法的江淮梅雨水汽输送特征分析[J].气象学报,2013(2):295-304.
[18] Zhang L,Zhao D,Zhou T,et al.Moisture Origins and Transport Processes for the 2020 Yangtze River Valley Record-Breaking Mei-yu Rainfall[J].Advances in Atmospheric Sciences,2021,38(12):2125-2136.
[19] Stein A F,Draxler R R,Rolph G D,et al.NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System[J].Bulletin of the American Meteorological Society,2015,96(12):2059-2077.
[20] Draxler R,Hess G.An overview of the HYSPLIT_4 modeling system for trajectories,dispersion,and deposition[J].Australian Meteorological Magazine,1998,47:295-308.
[21] Numaguti A.Origin and recycling processes of precipitating water over the Eurasian continent:Experiments using an atmospheric general circulation model[J].Journal of Geophysical Research:Atmospheres,1999,104(D2):1957-1972.
[22] Stohl A,James P.A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle.Part I:Method Description,Validation,and Demonstration for the August 2002 Flooding in Central Europe[J].Journal of Hydrometeorology,2004,5(4):656-678.
[23] Stohl A,James P.A Lagrangian Analysis of the Atmospheric Branch of the Global Water Cycle.Part II:Moisture Transports between Earth's Ocean Basins and River Catchments[J].Journal of Hydrometeorology,2005,6(6):961-984.
相似文献/References:
[1]蔡铭钰,程志刚,王俊锋.CMIP6多模式对三江源冬半年极端降水模拟能力评估[J].成都信息工程大学学报,2023,38(02):181.[doi:10.16836/j.cnki.jcuit.2023.02.009]
CAI Mingyu,CHENG Zhigang,WANG Junfeng.Precipitation in the Three-rivers in Winter Half Year[J].Journal of Chengdu University of Information Technology,2023,38(01):181.[doi:10.16836/j.cnki.jcuit.2023.02.009]
[2]马海岩,肖天贵.1960-2020年安徽省极端气候时空变化及与环流指数相关性分析[J].成都信息工程大学学报,2025,40(02):179.[doi:10.16836/j.cnki.jcuit.2025.02.009]
MA Haiyan,XIAO Tiangui.Spatial-Temporal Variation of Extreme Climate and its Correlation with Circulation Index in Anhui Province from 1960 to 2020[J].Journal of Chengdu University of Information Technology,2025,40(01):179.[doi:10.16836/j.cnki.jcuit.2025.02.009]
[3]梁雨欣,陈 樟,赵 勇,等.1983-2022年中亚季节极端降水事件的时空特征分析[J].成都信息工程大学学报,2025,40(02):212.[doi:10.16836/j.cnki.jcuit.2025.02.012]
LIANG Yuxin,CHEN Zhang,ZHAO Yong,et al.Spatial and Temporal Features of Seasonal Extreme Precipitation Events over Central Asia during 1983-2022[J].Journal of Chengdu University of Information Technology,2025,40(01):212.[doi:10.16836/j.cnki.jcuit.2025.02.012]
[4]杨 萌,陈 宁,邓 也,等.成都市1960-2022年极端降水时空分布及复合极值模型研究[J].成都信息工程大学学报,2025,40(05):652.[doi:10.16836/j.cnki.jcuit.2025.05.012]
YANG Meng,CHEN Ning,DENG Ye,et al.Spatial and Temporal Distribution of Extreme Precipitation and its Composite Extreme Value Distribution in Chengdu from 1960 to 2022[J].Journal of Chengdu University of Information Technology,2025,40(01):652.[doi:10.16836/j.cnki.jcuit.2025.05.012]
备注/Memo
收稿日期:2024-03-14
基金项目:国家自然科学基金资助项目(42030610、42205008、4257 5016); 四川省自然科学基金资助项目(2024NSFSC0776)
