WANG Xuejia,LI Xiehui,HUANG Jian.Analysis of the Spatiotemporal Variation Characteristics of Summer Heatwave Events in the Sichuan-Chongqing Region over the Past 35 Years[J].Journal of Chengdu University of Information Technology,2026,41(01):134-140.[doi:10.16836/j.cnki.jcuit.2026.01.018]
近35年川渝地区夏季高温热浪事件时空变化特征分析
- Title:
- Analysis of the Spatiotemporal Variation Characteristics of Summer Heatwave Events in the Sichuan-Chongqing Region over the Past 35 Years
- 文章编号:
- 2096-1618(2026)01-0134-07
- Keywords:
- heatwave events; spatiotemporal characteristics; heat index; heatwave index; Sichuan-Chongqing region
- 分类号:
- P467
- 文献标志码:
- A
- 摘要:
- 为探究在气候变暖背景下川渝地区高温热浪事件的时空分布特征,利用41个气象站点1988-2022年的夏季逐日气温和相对湿度数据,基于ArcGIS的空间分析工具,通过计算炎热指数、热浪指数,划分3种不同强度等级,主要对近35年川渝地区夏季高温热浪事件的平均日最高气温、发生频次、累积发生日数和不同等级强度的时空变化特征进行分析。结果表明:(1)近35年川渝地区夏季的平均日最高气温呈现显著的上升趋势,其中2005-2022年所有的年夏季日平均最高气温都高于气候基准期(1981-2010年),特别是2022年突破了自1961年以来的历史极值,高出基准期2.93 ℃;(2)从20世纪80年代末以来,川渝地区夏季高温热浪事件明显增多增强,90年代后更加明显,极端性更强。35年间高温热浪事件的频次、累积发生日数和平均强度均呈现出明显的线性增加趋势,增加速率分别为6.7次/10a、49.6 d/10a、0.45/10a;(3)夏季日平均高温差值、高温热浪事件的发生频次、累积发生日数、平均强度变化趋势、不同等级强度的累积发生日数都呈现由西向东逐渐增加的空间分布特点。其中重庆万州及周边地区的Ⅰ级重度热浪累积发生日数最多,高达211 d,平均约6 d/a,四川万源最少,35年中仅有4 d出现; 重庆沙坪坝区域的Ⅲ级轻度热浪事件累积发生日数最多,高达393 d,平均约11 d/a,四川都江堰则相对较少,35年中仅有13 d出现。研究结果对评估川渝地区夏季高温热浪事件的水电能源供需,防范灾害风险等能具有较好的理论支撑和实践指导意义。
- Abstract:
- To investigate the spatiotemporal distribution characteristics of heatwave events in the Sichuan-Chongqing region under climate warming, daily temperature and relative humidity data from 41 meteorological stations from 1988 to 2022 were used. Using the spatial analysis tools in ArcGIS software and calculating the heat index and heatwave index, three different intensity levels were classified. This study mainly analyzed the spatiotemporal variation characteristics of the average daily maximum temperature, frequency of occurrence, cumulative occurrence days, and different intensity levels of summer heatwave events in the Sichuan-Chongqing region over the past 35 years. The results indicated:(1)Over the past 35 years, the average daily maximum summer temperatures in the Sichuan-Chongqing region have shown a significant increasing trend. From 2005 to 2022, all summer seasons recorded average daily maximum temperatures higher than the climate reference period(1981-2010). In particular, in 2022, the temperatures surpassed historical extremes since 1961, exceeding the reference period by 2.93 ℃.(2)Since the late 1980s, the occurrence and intensity of summer high-temperature heatwave events in the Sichuan-Chongqing region have significantly increased, particularly more noticeable after the 1990s, with more extreme characteristics. The frequency, cumulative occurrence days, and average intensity of high-temperature heatwave events over the past 35 years have shown a clear linear increasing trend, with increasing rates of 6.7 times/10a, 49.6 days/10a, and 0.45/10a, respectively.(3)The spatial distribution of the summer daily average high-temperature anomaly, the frequency of high-temperature heatwave events, the cumulative number of occurrence days, the average intensity trend, and the cumulative number of occurrence days of different intensity levels all showed a spatial distribution characteristic of gradually increasing from west to east. Among them, Wanzhou and surrounding areas in Chongqing experienced the highest cumulative occurrence days of Grade I severe heatwaves, reaching up to 211 days, averaging approximately 6 days per year. Conversely, Wanyuan in Sichuan had the least occurrences, with only 4 days over the 35 years. In the Shapingba area of Chongqing, Grade III mild heatwave events had the highest cumulative occurrence days, totaling 393 days, averaging about 11 days per year. In contrast, Dujiangyan in Sichuan had relatively fewer occurrences, with only 13 days over 35 years. The study's findings provide good theoretical support and practical guidance for assessing the hydropower supply and demand and mitigating disaster risks associated with summer heatwave events in the Sichuan-Chongqing region.
参考文献/References:
[1] 周波涛,钱进.IPCC AR6报告解读:极端天气气候事件变化[J].气候变化研究进展,2021,17(6):713-718.
[2] 叶殿秀,尹继福,陈正洪,等.1961-2010年我国夏季高温热浪的时空变化特征[J].气候变化研究进展,2013,9(1):15-20.
[3] Anderson G B,Bell M L.Heat waves in the United States:mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities[J].Environmental health perspectives,2011,119(2):210-218.
[4] Vautard R,Gobiet A,Jacob D,et al.The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project[J].Climate dynamics,2013,41:2555-2575.
[5] 胡琼文,林洁,张权,等.1971-2020年河源市高温热浪变化特征分析[J].现代农业科技,2024(8):115-119.
[6] 邢佩,杨若子,杜吴鹏,等.1961-2017年华北地区高温日数及高温热浪时空变化特征[J].地理科学,2020,40(8):1365-1376.
[7] 张兴山,王娟怀,赵亮,等.1960-2020年京津冀高温热浪时空分布特征[J].气象与减灾研究,2022,45(3):179-186.
[8] 黄小梅,仕仁睿,刘思佳,等.西南地区夏季高温热浪时空分布特征及其成因[J].高原山地气象研究,2020,40(3):59-65.
[9] Coffel E D,Horton R M,De Sherbinin A.Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century[J].Environmental Research Letters,2017,13(1):014001.
[10] 何苗.全球气候变化与人群健康[J].生态经济,2024,40(1):1-4.
[11] Li C,Zhang X,Zwiers F,et al.Recent very hot summers in Northern Hemispheric land areas measured by wet bulb globe temperature will be the norm within 20 years[J].Earth's Future,2017,5(12):1203-1216.
[12] Lee S M,Min S K.Heat stress changes over East Asia under 1.5 and 2.0 C global warming targets[J].Journal of Climate,2018,31(7):2819-2831.
[13] Spangler K R,Liang S,Wellenius G A.Wet-bulb globe temperature,universal thermal climate index,and other heat metrics for US Counties,2000-2020[J].Scientific data,2022,9(1):326.
[14] 闫茜,黄晓军,张玉星,等.长江经济带高温热浪演化特征及人口暴露风险研究[J].长江流域资源与环境,2024,33(5):1041-1054.
[15] 周洋,祝善友,华俊玮,等.南京市高温热浪时空分布研究[J].地球信息科学学报,2018,20(11):1613-1621.
[16] 张芬,李双双,陈超君,等.重庆暴雨、热浪、干旱时空格局及聚类特征[J].自然灾害学报,2023,32(6):83-95.
[17] 郭蕾,李谢辉,刘雨亭.城市化对川渝地区极端气候事件的影响[J].应用气象学报,2023,34(5):574-585.
[18] 黄卓,陈辉,田华.高温热浪指标研究[J].气象,2011,37(3):345-351.
[19] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会.高温热浪等级(GB/T 29457-2012)[S].中国标准出版社,2013.
[20] Luo M,Lau N C.Heat waves in southern China:Synoptic behavior,long-term change,and urbanization effects[J].Journal of Climate,2017,30(2):703-720.
相似文献/References:
[1]曾 剑,徐晴晗,张 宇,等.中国西南地区百年气温的时空演变特征[J].成都信息工程大学学报,2022,37(04):412.[doi:10.16836/j.cnki.jcuit.2022.04.009]
ZENG Jian,XU Qinghan,ZHANG Yu,et al.Temporal and Spatial Characteristics of Temperature in Southwest China during the Past Century[J].Journal of Chengdu University of Information Technology,2022,37(01):412.[doi:10.16836/j.cnki.jcuit.2022.04.009]
[2]李怡辛,范广洲,华 维.南亚高压初登高原时间对中国东部盛夏降水的影响[J].成都信息工程大学学报,2025,40(02):163.[doi:10.16836/j.cnki.jcuit.2025.02.007]
LI Yixin,FAN Guangzhou,HUA Wei.The Impact of the Time when the South Asian High First Landing the Tibetan Plateau on Midsummer Precipitation in Eastern China[J].Journal of Chengdu University of Information Technology,2025,40(01):163.[doi:10.16836/j.cnki.jcuit.2025.02.007]
[3]李昀晓,华 维,杨亦典.北大西洋春季海温对中国东北地区夏季气温的影响[J].成都信息工程大学学报,2025,40(03):346.[doi:10.16836/j.cnki.jcuit.2025.03.015]
LI Yunxiao,HUA Wei,YANG Yidian.Influence of Spring North Atlantic Sea Surface Temperature on Summer Temperature Variability in Northeast China[J].Journal of Chengdu University of Information Technology,2025,40(01):346.[doi:10.16836/j.cnki.jcuit.2025.03.015]
备注/Memo
收稿日期:2024-06-05
基金项目:四川省高校人文社会科学重点研究基地气象灾害预测预警与应急管理研究中心开放重点资助项目(ZHYJ23-ZD01); 云南省科技厅重点研发计划资助项目(202203AC100005、202203AC100006)
通信作者:李谢辉.E-mail:lixiehui@cuit.edu.cn
