PDF下载 分享
[1]王 铃,陶宏才.基于LSTM前融合中文情感倾向分类模型的研究[J].成都信息工程大学学报,2020,35(02):139-145.[doi:10.16836/j.cnki.jcuit.2020.02.003]
 WANG Ling,TAO Hongcai.Research on the Classification Model of Pre-fusion Chinese Emotion Tendency based on LSTM[J].Journal of Chengdu University of Information Technology,2020,35(02):139-145.[doi:10.16836/j.cnki.jcuit.2020.02.003]
点击复制

基于LSTM前融合中文情感倾向分类模型的研究

参考文献/References:

[1] Liu B.Sentiment analysis:mining opinions,sentiments,and emotions[C].The Cambridge University Press,2015.
[2] Liu B.Sentiment analysis and opinion mining(introduction and survey),Morgan & Claypool,May 2012.
[3] Pang B.,Lee L.A sentimental education:Sentiment analysis using subjectivity summ-arization based on minimum cuts[C].Proc-eedings of the 42nd Annual Meeting on Ass-ociation for Computational Linguistics.Stro-udsburg,PA,USA:ACL,2004:271-278.
[4] 百度百科.文本情感分析[DB/OL].https://baike.baidu.com/item/%E6%96%87%E6%9C%AC%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90/19431243?fr=aladdin,2019-01-12.
[5] Socher R,Perelygin A,Wu J Y,et al.Re-cursive deep models for semantic compositionality over a sentiment treebank[C].Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,EMNLP.2013:1631-1642.
[6] Ma X L,Jin B Y,Fan B S.An Analysis of Chinese Text Emotional Tendency[J].Information and Documentation Service,2013(1):52-56.
[7] 黄萱菁,张奇,吴苑斌.文本情感倾向分析[J].中文信息学报,2011,25(6):118-126.
[8] 赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848.
[9] 李艺红,蒋秀凤.中文句子倾向性分析[J].福州大学学报(自然科学版),2010,38(4):504-508.
[10] 夏玉芹,单雪微.基于Python的简单文本情感分析[J].阴三学刊,2018,32(4):58-62.
[11] 周虎,于跃,贾媛媛,等.基于深度LTSM神经网络的在线消费评论情感分类研究[J].中华医学图书情杂志,2018,27(5):23-29.
[12] 黄东晋,纪浩,耿晓云,等.基于文本矢量特征的电影评分预测模型[J].现代电影技术,2019(3):44-50.
[13] 王名扬,吴欢,贾晓婷.结合word2vec与扩充情感词典的微博多元情感分类研究[J].东北师大学报(自然科学版),2019,51(1):55-62.
[14] 胡荣磊,芮璐,齐筱,等.基于循环神经网络和注意力模型的文本情感分析[J].计算机应用研究,2019,36(11):3282-3285.
[15] 金宸,李维华,姬晨,等.基于双向LSTM神经网络模型的中文分词[J].中文信息学报,2018,32(2):29-37.
[16] 张玉环.基于多种LSTM结构的文本情感分析[D].北京:北京邮电大学,2018.
[17] Wang J.,Cao Z.W.Chinese Text Sentiment Analysis Using LSTM Network Based on L2 and Nadam [C]. Proceedings of 2017 17th IEEE International Conference on Communication Technology(ICCT 2017),2017:1891-1895.

备注/Memo

收稿日期:2019-12-13 基金项目:国家自然科学基金资助项目(61806170)

更新日期/Last Update: 2020-04-30