TAN Tian,XIAO Hui,SUN Yue,et al.Numerical Simulation of Microphysical Structures of a Severe Thunderstorm in Beijing and their Comparisons with Polarimetric Radar Observations[J].Journal of Chengdu University of Information Technology,2017,(04):409-418.[doi:10.16836/j.cnki.jcuit.2017.04.011]
北京地区雷暴云微物理结构数值模拟 及其与双偏振雷达观测对比
- Title:
- Numerical Simulation of Microphysical Structures of a Severe Thunderstorm in Beijing and their Comparisons with Polarimetric Radar Observations
- 文章编号:
- 2096-1618(2017)04-0409-10
- Keywords:
- atmospheric physics; thunderstorm; microphysical structure; polarimetric radar observation; chargestructure; electrification process
- 分类号:
- P427.32+1
- 文献标志码:
- A
- 摘要:
- 为了对华北地区雷暴云微物理和起电机制有更深入的认识,利用三维雷暴云动力-微物理-电耦合数值模式对2015年8月22日发生在北京东北部的一次雷暴云过程进行了数值模拟,并将模拟所得雷暴云微观结构与X波段双偏振雷达观测进行了对比分析。结果表明:模拟的雷暴云宏观结构和各水成物粒子分布与双偏振雷达观测宏观结构和根据双偏振参量反演的粒子相态分布具有较好的一致性,模拟的雷暴云宏微观结构有较好的可信度。在发展阶段雷暴云电荷结构出现为“上负下正”反偶极性,在发展阶段后期,在雷暴云上部的主负电荷区中出现了正电荷中心。在成熟阶段雷暴云中总电荷结构呈现为典型的“正-负-正”三极性特征。
- Abstract:
- This paper used the three-dimensional dynamic-microphysical-electric-coupling thundercloud numerical model to make a numerical simulation of a severe thunderstorm occurred in northeastern Beijing on August 22, 2015,the simulation results were compared with the hydrometeor structures retrieved by X-band polarimetric radar observation.The model simulation results are in good consistent with the X-band polarimetric radar observations in the macro-structure of thunderstorm and the distribution of hydrometeor particles in the thunderstorm.Moreover,the simulation has high reliability. Under this condition, the evolutions of the charge structureand electrification process were analyzed.The results show that in the development stage of the thunderstorm, the general charge structure in the cloud presents an inverted dipole characteristic with a "negative-positive"polarity.And in themature stage, the general charge structure shows a normal tripole characteristic of "positive-negative-positive "polarity.The electrification processes are further analyzed in the paper.
参考文献/References:
[1] Smith M H,Orville H D.Electrical effects for a numerical cloud model[R].South Dakota School of Mines and Technology Rapid City Institute of Atmospheric Sciences,1970.
[2] Chiu C S.Numerical study of cloud electrification in an axisymmetric,time-dependent cloud model[J].Journal of Geophysical Research:Oceans,1978,83(C10):5025-5049.
[3] Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms[J].Journal of the Atmospheric Sciences,1978,35(8):1536-1548.
[4] Takahashi T.Thunderstorm electrification-A numerical study[J].Journal of theAtmospheric Sciences,1984,41(17):2541-2558.
[5] 孙安平,张义军,言穆弘.雷暴电过程对动力发展的影响研究[J].高原气象,2004,23(1):26-32.
[6] 孙安平,言穆弘,张义军.三维强风暴动力—电耦合数值模拟研究I:模式及其电过程参数化方案[J].气象学报,2002,60(6):722-731.
[7] 侯团结,牛生杰,雷恒池,等.长春地区对流云起电过程的数值模拟[J].南京气象学院学报,2008,(2):221-227.
[8] 侯团结.雷暴云起电过程的数值模拟研究[D].南京:南京信息工程大学,2007.
[9] 郭凤霞,陆干沂,吴鑫,等.强雷暴中正地闪发生的条件[J].中国科学:地球科学,2016,46(5):730-742.
[10] 郭凤霞,张义军,言穆弘.雷暴云首次放电前两种非感应起电参数化方案的比较[J].大气科学,2010,34(2):361-373.
[11] 丁鹏飞,寇正,邱实,等.六种非感应起电参数化方案对南京一次雷暴电荷结构的数值模拟分析[J].热带气象学报,2016,(1):125-136.
[12] 周志敏.强风暴云微物理与电过程相互作用机理研究[D].北京:中国科学院研究生院(大气物理研究所),2008.
[13] Seliga T A,Bringi V N.Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation[J].Journal of Applied Meteorology,1976,15:69-76.
[14] Doviak R J,Zrnic D S.Doppler Radar and Weather Observations[J].Applied Optics,1994,33(21):4531.
[15] Ziegler C L,Macgorman D R,Dye J E,et al.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].Journal of Geophysical Research,1991,96(D7):12833-12855.
[16] Macgorman D R,Straka J M,Ziegler C L.A Lightning Parameterization for Numerical Cloud Models[J].Journal of Applied Meteorology,2001,40(3):459-478.
[17] 杨慧玲,肖辉,洪延超.气溶胶对冰雹云物理特性影响的数值模拟研究[J].高原气象,2011,30(2):445-460.
[18] 何宇翔,吕达仁,肖辉等.X波段双线极化雷达反射率的衰减订正[J].大气科学,2009,(5):1027-1037.
[19] 刘亚男,肖辉,姚振东,等.X波段双极化雷达对云中水凝物粒子的相态识别[J].气候与环境研究,2012,17(6):925-936.
[20] 郄秀书,张义军,张其林.闪电放电特征和雷暴电荷结构研究[J].气象学报,2005,63(5):646-658.
[21] 郄秀书,刘冬霞,孙竹玲.闪电气象学研究进展[J].气象学报,2014(5):1054-1068.
[22] Qie X S,Chen C P,Zhang G S,et al.The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau[J].Geophysical Research Letters,2005,32.
[23] 赵中阔,郄秀书,张廷龙,等.一次单体雷暴云的穿云电场探测及云内电荷结构[J].科学通报,2009,554(22):3522-3536.
[24] Li Y.J.,G.Zhang,J.Wen,et al.Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping[J].Atmospheric Research,2013,134:137-149.
[25] Mansell E R,MacGorman D R,Ziegler C L,et al.Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J].Journal of Geophysical Research:Atmospheres,2005,110(D12).
[26] 张义军,徐良韬,郑栋,等.强风暴中反极性电荷结构研究进展[J].应用气象学报,2014,25(5):513-526.
相似文献/References:
[1]李培荣,向卫国.四川盆地逆温层特征对空气污染的影响[J].成都信息工程大学学报,2018,(02):220.[doi:10.16836/j.cnki.jcuit.2018.02.018]
LI Pei-rong,XIANG Wei-guo.Influence of Inversion Layer Characteristics in Sichuan Basin on Air Pollution[J].Journal of Chengdu University of Information Technology,2018,(04):220.[doi:10.16836/j.cnki.jcuit.2018.02.018]
[2]钱鑫铭,周筠珺,赵鹏国,等.一次四川盆地雷暴天气的数值模拟分析[J].成都信息工程大学学报,2019,(05):532.[doi:10.16836/j.cnki.jcuit.2019.05.015]
QIAN Xinming,ZHOU Yunjun,ZHAO Pengguo,et al.Numerical Simulation Study of Thunderstorms in Sichuan based on WRF Model[J].Journal of Chengdu University of Information Technology,2019,(04):532.[doi:10.16836/j.cnki.jcuit.2019.05.015]
[3]李思盟,蔺诗颖,陈南西,等.逆温层对成都地区雾霾影响的研究[J].成都信息工程大学学报,2020,35(01):79.[doi:10.16836/j.cnki.jcuit.2020.01.011]
LI Simeng,LIN Shiying,CHEN Nanxi,et al.Research of the Influence of Inversion Layer on Haze over Chengdu[J].Journal of Chengdu University of Information Technology,2020,35(04):79.[doi:10.16836/j.cnki.jcuit.2020.01.011]
[4]于建宇,李茂善,阴蜀城,等.青藏高原那曲地区云降水微观特征雨滴谱分析[J].成都信息工程大学学报,2020,35(02):188.[doi:10.16836/j.cnki.jcuit.2020.02.010]
YU Jianyu,LI Maoshan,YIN Shucheng,et al.Analysis of Cloud Precipitation Microscopic Characteristic Raindrop Spectrum in Nagqu Area of Qinghai-Tibet Plateau[J].Journal of Chengdu University of Information Technology,2020,35(04):188.[doi:10.16836/j.cnki.jcuit.2020.02.010]
[5]曾 剑,张 强,张 宇,等.青藏高原高寒草甸的空气动力学粗糙度特征[J].成都信息工程大学学报,2022,37(04):429.[doi:10.16836/j.cnki.jcuit.2022.04.011]
ZENG Jian,ZHANG Qiang,ZHANG Yu,et al.The Characteristics of Aerodynamic Aoughness Length of Alpine Meadows on the Qinghai-Tibet Plateau[J].Journal of Chengdu University of Information Technology,2022,37(04):429.[doi:10.16836/j.cnki.jcuit.2022.04.011]
[6]谢晓林,胡 迪,罗宇昂,等.成都“8·11”强对流天气多普勒雷达与闪电特征分析[J].成都信息工程大学学报,2022,37(06):701.[doi:10.16836/j.cnki.jcuit.2022.06.013]
XIE Xiaolin,HU Di,LUO Yuang,et al.Analysis of Doppler Radarand Lightning Characteristics in“8·11” Severe Convective Weather in Chengdu[J].Journal of Chengdu University of Information Technology,2022,37(04):701.[doi:10.16836/j.cnki.jcuit.2022.06.013]
备注/Memo
收稿日期:2017-03-28 基金项目:国家重点基础研究发展计划(973)资助项目(2014CB441403、2013CB430105); 国家自然科学基金资助项目(41575037、41605019)