PDF下载 分享
[1]刘宇宁,陶宏才.基于RBM模型的豆瓣小组推荐系统设计与实现[J].成都信息工程大学学报,2018,(02):107-112.[doi:10.16836/j.cnki.jcuit.2018.02.001]
 LIU Yu-ning,TAO Hong-cai.Design and Implementation of the RecommendationSystem for Douban Group based on RBM Model[J].Journal of Chengdu University of Information Technology,2018,(02):107-112.[doi:10.16836/j.cnki.jcuit.2018.02.001]
点击复制

基于RBM模型的豆瓣小组推荐系统设计与实现

参考文献/References:

[1] Linden G,Smith B,York J Amazon.Com Recommendations:Item-to-Item Collaborative Filtering[J].IEEE Internet Computing,2003,7(1):76-80.
[2] Georgiev K,Nakov P.A non-IID framework for collaborative filtering with restricted Boltzmann machines[C].International Conference on International Conference on Machine Learning.JMLR.org,2013:1148-1156.
[3] Lecun Y, Bengio Y,Hinton G.Deep learning[J].Nature,2015,521(7553):436-444.
[4] Salakhutdinov R, Mnih A,Hinton G.Restricted Boltzmann machines for collaborative filtering[C].International Conference on Machine Learning.ACM,2007:791-798.
[5] Hu L,Cao J,Xu G,et al.Deep modeling of group preferences for group-based recommendation[C].Twenty-Eighth AAAI Conference on Artificial Intelligence.AAAI Press,2014:1861-1867.
[6] Wang X,Wang Y.Improving Content-based and Hybrid Music Recommendation using Deep Learning[C].ACM International Conference on Multimedia. ACM,2014:627-636.
[7] Yon R.Music Personalization at Spotify[C].ACM Conference on Recommender Systems.ACM,2016:373-373.
[8] Liu Q,Wu S,Wang L,et al.Predicting the next location: a recurrent model with spatial and temporal contexts[C].Thirtieth AAAI Conference on Artificial Intelligence.AAAI Press,2016:194-200.
[9] Wang S,Wang Y,Tang J,et al.What Your ImagesReveal:Exploiting Visual Contents for Point-of-Interest Recommendation[C].The International Conference,2017:391-400.
[10] 张春霞,姬楠楠,王冠伟.受限波尔兹曼机简介[J].工程数学学报,2013(2):159-173.
[11] Roux N L,Bengio Y.Representational power of restricted boltzmann machines and deep belief networks[J].Neural Computation,2008,20(6):1631.
[12] Hinton G E.Training products of experts by minimizing contrastive divergence [M].MIT Press,2002.
[13] Covington P,Adams J,Sargin E.Deep Neural Networks for YouTube Recommendations[C]. ACM Conference on Recommender Systems.ACM,2016:191-198.
[14] Amatriain X,Lathia N,Pujol J M,et al.The wisdom of the few:a collaborative filtering approach based on expert opinions from the web[C].International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2009:532-539.
[15] 罗恒.基于协同过滤视角的受限玻尔兹曼机研究[D].上海:上海交通大学,2011.
[16] Geoffrey E.Hinton.A Practical Guide to Training Restricted Boltzmann Machines[J].Momentum,2012,9(1):599-619.
[17] 何洁月,马贝.利用社交关系的实值条件受限玻尔兹曼机协同过滤推荐算法[J].计算机学报,2016(1):183-195.

相似文献/References:

[1]孙琛恺,安俊秀.用于评价推荐系统的多样性指数的研究[J].成都信息工程大学学报,2021,36(03):253.[doi:10.16836/j.cnki.jcuit.2021.03.002]
 SUN Chenkai,AN Junxiu.Research on Diversity Index for Evaluating Recommendation System[J].Journal of Chengdu University of Information Technology,2021,36(02):253.[doi:10.16836/j.cnki.jcuit.2021.03.002]

备注/Memo

收稿日期:2018-01-13基金项目:国家自然科学基金资助项目(61505168)

更新日期/Last Update: 2018-01-31