LIU Heng,ZHOU Yun-jun,ZHAO Peng-guo,et al.Numerical Simulation Study on Electrical Activity of a Squall Line in Beijing[J].Journal of Chengdu University of Information Technology,2018,(03):296-306.[doi:10.16836/j.cnki.jcuit.2018.03.013]
北京地区飑线天气雷电活动的数值模拟研究
- Title:
- Numerical Simulation Study on Electrical Activity of a Squall Line in Beijing
- 文章编号:
- 2096-1618(2018)03-0296-10
- Keywords:
- atmospheric physics and environment; lightning physics; WRF model; charging and discharging; hydrometeors; microphysics; charging structure; lightning activity
- 分类号:
- P427.32
- 文献标志码:
- A
- 摘要:
- 为了利用WRF模式对闪电活动进行数值预报,在WRF中尺度模式的Morrison双参数化微物理方案中引入起电放电的物理过程。在此基础上模拟2015年7月27日北京一次飑线过程,分析了飑线的微物理特征和电荷结构特征,并将模式输出的闪电活动特征与雷电监测定位网探测得到的地闪数据进行对比。结果表明:飑线内各水成物粒子的含量从高到低分别为霰粒子、雨水、云水、冰晶粒子和雪粒子,空间分布上霰粒子垂直位置达13 km,冰晶粒子和雪粒子的分布可达14 km以上,云滴粒子最高可达11 km,雨水位置在5 km以下。在非感应起电机制下,霰粒子电荷极性为负,冰晶粒子和雪粒子电荷极性都为正。模拟的飑线电荷结构为上正下负的偶极性结构,模式输出的闪电频数与实测地闪频数随时间变化的趋势基本保持一致,模式输出的闪电分布位置与观测的闪电分布接近。
- Abstract:
- Inorder topredict the lightning activity by WRF model, the non-inductive charging mechanism and a bulk lightning parameterization scheme were coupled to Morrison two-moment micro physics scheme in WRF model. On these bases, a squall line occurred in Beijing on July 27 of 2015 was simulated. The microphysical characteristics and charge structure characteristics were analyzed in detail, moreover,comparative analysis of the lightning activity from the WRF-simulated and observed CG flashes by ADTD was also performed. The results show that the content of each hydrometeor from high to low is graupel, cloud water, rain water, ice and snow. The distribution of graupel in the vertical direction can reach more than 13 km while ice and snow can reach more than14 km, and cloud water can reach up to 11 km and rain water is below 5 km. Under the non-inductive charging mechanism, graupel takes a negative charge, ice and snow both take a positive charge. On the other hand, the simulation of squall line produces a normal dipole charge structure, consisting of a main positive charge region with an upper main negative charge region. Moreover, the temporal evolution characteristics of lightning frequency from WRF model were nearly consistent with the observed cloud-to-ground(CG)lightning flashes rates, and the simulated distribution of lightning density is similar to the observed CG lightning density in the maturer of the squall line.
参考文献/References:
[1] 翟园,洪超,乔娟,等.湖南地区多普勒天气雷达回波与云地闪关系研究[J].中国农学通报,2016,32(11):115-120.
[2] C T R Wilson.Investigations on Lightning Discharges and on the Electric Field of Thunderstorms[J]. Philosophical Transactions of the Royal Society of London.Series A,Containing Papers of a Mathematical or Physical Character,1921,221(330):73-115.
[3] Simpson S G,Scrase F J.The distribution of electricity in thunderclouds[J].Proc Roy Soc Lond.1937,161:309-352.
[4] Simpson S G,Robinson G D.The Distribution of Electricity in Thunderclouds,II[J].Proceedings of the Royal Society of London,1941,177(970):281-329.
[5] 邵选民,刘欣生.云中闪电及云下部正电荷的初步分析[J].高原气象,1987,6(4):317-325.
[6] Marshall T C,David R W,Maribeth S.Electrical structure and updraft speeds in thunderstorms over the southern Great Plains[J]. Journal of Geophysical Research,1995,100(D1):1001-1015.
[7] Marshall T C,Rust W D.Electric field soundings through thunderstorms[J].Journal of Geophysical Research:Atmospheres,1991,96(D12):22297-22306.
[8] Maribeth Stolzenburg,W David Rust,Bradley F Smull,et al.Electrical structure in thunderstorm convective regions:1.Mesoscale convective systems[J].Journal of Geophysical Research:Atmospheres,1998,103(D12):14059-14078.
[9] Maribeth Stolzenburg,W David Rust,Bradley F Smull,et al.Electrical structure in thunderstorm convective regions 2. Isolated storms[J].Journal of Geophysical Research Atmospheres,1998,103(D12):14079-14096.
[10] Maribeth Stolzenburg,W David Rust,Bradley F.Smull,et al.Electrical structure in thunderstorm convective regions 3. Synthesis[J].Journal of Geophysical Research Atmospheres,1998,103(D12):14097-14108.
[11] 张义军,刘欣生,肖庆复.中国南北方雷暴及人工触发闪电电特性对比分析[J].高原气象,1997,16(2):113-121.
[12] Williams E R.The Electrification of Severe Storms[J].Meteorological Monographs,2001,28:527-528.
[13] Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms[J].J.atmos.sci,1978,35(8):1536-1548.
[14] Carey L D,Rutledge S A.Electrical and multiparameter radar observations of a severe hailstorm[J].Journal of Geophysical Research Atmospheres,1998,103(D12):13979-14000.
[15] Saunders C P R,Keith W D,Mitzeva R P.The effect of liquid water on thunderstorm charging[J].Journal of Geophysical Research Atmospheres,1991,96(D6):11007-11017.
[16] Helsdon J H Jr,Wojcik W A,Farley R D.An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model[J].J.Geophys.Res.,2001,106(D1):1165-1192.
[17] Mansell E R,Macgorman D R,Ziegler C L,et al.Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J].Journal of Geophysical Research Atmospheres,2005,110(D12).
[18] Mitzeva R P,Saunders C P R,Tsenova B.A modeling study of the effect of cloud saturation and particle growth rates on charge transfer in thunderstorm electrification[J].Atmospheric Research,2005,76(1):206-221.
[19] 徐良韬,张义军,王飞,等.雷暴起电和放电物理过程在WRF模式中的耦合及初步检验[J].大气科学,2012,36(5):1041-1052.
[20] 谢屹然,郄秀书,郭凤霞,等.液态水含量和冰晶浓度对闪电频数影响的数值模拟研究[J].高原气象,2005,43(4):598-603.
[21] 谭涌波.闪电放电与雷暴云电荷、电位分布相互关系的数值模似[D].合肥:中国科学技术大学,2006.
[22] 李家启,栾健,王鹏,等.闪电定位资料质量控制中小幅值地闪范围的研究[J].高电压技术,2014,40(3):727-731.
[23] Zhao P,Yin Y,Xiao H.The effects of aerosol on development of thunderstorm electrification:A numerical study[J].Atmospheric Research,2015,153:376-391.
[24] Lin,Yuh Lang,Farley R D,et al.Bulk Parameterization of the Snow Field in a Cloud Model[J].Journal of Applied Meteorology,1983,22(6):1065-1092.
[25] Saunders C P R,Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions[J].Journal of Geophysical Research Atmospheres,1998,103(D12):13949-13956.
[26] Ziegler C L,Macgorman D R,Dye J E,et al.A model evaluation of noninductive graupel-ice charging in the early electrification of a mountain thunderstorm[J].Journal of Geophysical Research,2012,96(D7):12833-12855.
[27] Marshall T C,Mccarthy M P,Rust W D. Electric field magnitudes and lightning initiation in thunderstorms[J].Journal of Geophysical Research Atmospheres,1995,100(D4):7097-7103.
[28] Mansell E R,Macgorman D R,Ziegler C L,et al.Simulated three-dimensional branched lightning in a numerical thunderstorm model[J].Journal of Geophysical Research,2002,107(D9).
[29] 赵鹏国,银燕,周筠珺,等.基于WRF模式对华北一次飑线过程中雷电活动的间接和直接模拟研究[J].气象科学,2017,37(3):293-303.
相似文献/References:
[1]成鹏伟,周筠珺,赵鹏国,等.北京与成都城市下垫面闪电时空分布特征对比研究[J].成都信息工程大学学报,2018,(03):326.[doi:10.16836/j.cnki.jcuit.2018.03.016]
CHENG Peng-wei,ZHOU Yun-jun,ZHANO Peng-guo,et al.A Comparative Study on Space-time Distribution Characteristics ofLightning Flashes in Beijing and Chengdu Cities[J].Journal of Chengdu University of Information Technology,2018,(03):326.[doi:10.16836/j.cnki.jcuit.2018.03.016]
[2]张凯锋,曹 宁,张 敏.CMIP5多模式下的ENSO模拟评估及非对称性特征分析[J].成都信息工程大学学报,2019,(03):278.[doi:10.16836/j.cnki.jcuit.2019.03.013]
ZHANG KaiFeng,CAO Ning,ZHANG Min.Evaluation and Asymmetry Feature Analysis of ENSO Events in CMIP5 Multi-models[J].Journal of Chengdu University of Information Technology,2019,(03):278.[doi:10.16836/j.cnki.jcuit.2019.03.013]
[3]蔡宏珂,郑泽华,陈权亮,等.Kelud火山喷发对平流层光学性质的影响[J].成都信息工程大学学报,2018,(05):572.[doi:10.16836/j.cnki.jcuit.2018.05.015]
CAI Hong-ke,ZHENG Ze-hua,CHEN Quan-liang,et al.The Lidar Observation for Stratospheric Optical
Features Influenced by Kelud Eruption[J].Journal of Chengdu University of Information Technology,2018,(03):572.[doi:10.16836/j.cnki.jcuit.2018.05.015]
[4]张银量,宣越健,张金强,等.东亚3 个站点臭氧层顶和对流层顶关系研究[J].成都信息工程大学学报,2016,(01):116.
ZHANG Yin-Liang,XUAN Yue-Jian,ZHANG Jin-Qiang,et al.A Study of Relationship between Ozonopause and Tropopause
over Three Sites in the East Asian[J].Journal of Chengdu University of Information Technology,2016,(03):116.
[5]鞠诗尧,张小玲,范广洲,等.北京地区一次持续重污染过程的气象成因分析[J].成都信息工程大学学报,2017,(04):419.[doi:10.16836/j.cnki.jcuit.2017.04.012]
JU Shi-yao,ZHANG Xiao-ling,FAN Guang-zhou,et al.Analysis of Meteorological Conditions for a Continuous
Heavy Pollution Process in Beijing[J].Journal of Chengdu University of Information Technology,2017,(03):419.[doi:10.16836/j.cnki.jcuit.2017.04.012]
[6]李一凡,肖 辉,杨慧玲,等.北京地区一次冬季降雪天气及其云微物理过程的数值模拟[J].成都信息工程大学学报,2020,35(01):55.[doi:10.16836/j.cnki.jcuit.2020.01.009]
LI Yifan,XIAO Hui,YANG Huiling,et al.Numerical Simulation of a Beijing Winter Snowstorm and its Cloud Microphysical Processes[J].Journal of Chengdu University of Information Technology,2020,35(03):55.[doi:10.16836/j.cnki.jcuit.2020.01.009]
[7]刘蕾蕾,聂椿力,张 梦,等.海陆风对广东沿海地区秋冬季污染物的影响研究[J].成都信息工程大学学报,2021,36(03):316.[doi:10.16836/j.cnki.jcuit.2021.03.013]
LIU Leilei,NIE Chunli,ZHANG Meng,et al.Effects of Land-sea Breeze on Autumn and Winter Pollution in some Coastal Areas of Guangdong Province[J].Journal of Chengdu University of Information Technology,2021,36(03):316.[doi:10.16836/j.cnki.jcuit.2021.03.013]
[8]周 昱,尹志聪,周筠珺.贵州威宁一次雹暴过程的雷达观测与数值模拟研究[J].成都信息工程大学学报,2022,37(02):177.[doi:10.16836/j.cnki.jcuit.2022.02.011]
ZHOU Yu,YIN Zhicong,ZHOU Yunjun.Observation and Numerical Simulation Study of a Hailstorm in Weining Guizhou Province[J].Journal of Chengdu University of Information Technology,2022,37(03):177.[doi:10.16836/j.cnki.jcuit.2022.02.011]
[9]路增鑫,范广洲.一次高原低涡过程云微物理特征模拟研究[J].成都信息工程大学学报,2023,38(02):166.[doi:10.16836/j.cnki.jcuit.2023.02.007]
LU Zengxin,FAN Guangzhou.Simulation of Cloud Microphysical Characteristics during a Plateau Vortex Process[J].Journal of Chengdu University of Information Technology,2023,38(03):166.[doi:10.16836/j.cnki.jcuit.2023.02.007]
[10]王莹珏,彭思越,张浩然,等.广东龙门地区雨滴谱特征研究[J].成都信息工程大学学报,2023,38(05):548.[doi:10.16836/j.cnki.jcuit.2023.05.009]
WANG Yingjue,PENG Siyue,ZHANG Haoran,et al.Raindrop Spectrum Characteristics in Longmen Guangdong Province[J].Journal of Chengdu University of Information Technology,2023,38(03):548.[doi:10.16836/j.cnki.jcuit.2023.05.009]
备注/Memo
收稿日期:2018-01-02基金项目:国家重点基础研究发展计划(973计划)资助项目(2014CB441401); 国家科技支撑计划资助项目(2015BAC03B00); 四川省教育厅资助项目(16CZ0021); 四川省教育厅科研资助项目(17ZB0087)