PDF下载 分享
[1]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525-530.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(05):525-530.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
点击复制

基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法

参考文献/References:

[1] Lan Goodfellow,Yoshua Bengio,Aaron Courville,等.深度学习[M].北京:人民邮电出版社,2017:203-307.
[2] Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks[C].International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates,Inc.2012:1097-1105.
[3] Abadi M,Agarwal A,Barham P,et al.TensorFlow:Large-Scale Machine Learning on Heterogeneous Distributed Systems[OL].https://arxiv.org/abs/1603.04467v1,2016.
[4] Shelhamer E,Long J,Darrell T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,39(4):640-651.
[5] Ronneberger O,Fischer P,Brox T.U-Net:Convolutional Networks for Biomedical Image Segmentation[C].International Conference on Medical Image Computing and Computer-Assisted Intervention.Europe:Springer,Cham,2015:234-241.
[6] Ioffe S,and Szegedy C.Batch normalization: accelerating deep network training by reducing internal covariate shift[C].International Conference on International Conference on Machine Learning.Lille,France,2015:448-456.
[7] He K,Zhang X,Ren S,et al.Deep Residual Learning for Image Recognition[C].IEEE Conference on Computer Vision and Pattern Recognition.United States:IEEE,2016:770-778.
[8] Huang G,Liu Z,Maaten L V D,et al.Densely Connected Convolutional Networks[C].IEEE Conference on Computer Vision and Pattern Recognition.United States:IEEE,2017:2261-2269.
[9] Yu F,Koltun V.Multi-Scale Context Aggregation by Dilated Convolutions[OL].https://arxiv.org/abs/1511.07122,2015.
[10] Staal J,Abràmoff M D,Niemeijer M,et al.Ridge-based vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging.United States:IEEE,2004,23(4):501-509.
[11] 朱承璋,崔锦恺,邹北骥,等.基于多特征融合和随机森林的视网膜血管分割[J].计算机辅助设计与图形学学报,2017,29(4):584-592.

相似文献/References:

[1]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[2]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
 REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(05):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]黄 洁,王 燚.适用于侧信道分析的卷积神经网络结构的实验研究[J].成都信息工程大学学报,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
 HUANG Jie,WANG Yi.Experimental Study on the Structure of Convolutional Neural Network Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
[5]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
 FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(05):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[6]王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(03):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
 WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(05):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
[7]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
 YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[8]唐康健,文 展,李文藻.基于卷积神经网络的垃圾图像分类模型研究应用[J].成都信息工程大学学报,2021,36(04):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
 TANG Kangjian,WEN Zhan,LI Wenzao.Research and Application of Garbage Image Classification Model based on Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2021,36(05):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
[9]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
 YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(05):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
[10]蒲建飞,魏 维,吴帝勇,等.基于烟雾区域和轻量化模型的视频烟雾检测[J].成都信息工程大学学报,2023,38(03):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
 PU Jianfei,WEI Wei,WU Diyong,et al.Video Smoke Detection based on Smoke Area and Lightweight Model[J].Journal of Chengdu University of Information Technology,2023,38(05):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
[11]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(05):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[12]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(05):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[13]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(05):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]

备注/Memo

收稿日期:2018-05-29

更新日期/Last Update: 2018-04-30