ZHANG Yuan-long,ZHOU Yun-jun,WANG Dong-fang,et al.The Distribution Characteristics and Return Stroke Peak Current of CG Lightning in Beijing Regions[J].Journal of Chengdu University of Information Technology,2018,(06):667-674.[doi:10.16836/j.cnki.jcuit.2018.06.012]
北京地区的地闪分布及回击峰值电流强度特征
- Title:
- The Distribution Characteristics and Return Stroke Peak Current of CG Lightning in Beijing Regions
- 文章编号:
- 2096-1618(2018)06-0667-08
- Keywords:
- synoptic meteorology; thunderstorm; Beijing regions; CG lightning; return stroke; peak current
- 分类号:
- P446
- 文献标志码:
- A
- 摘要:
- 针对北京地区开展闪电探测研究,分析闪电分布特征及回击峰值电流强度,不仅能够深入了解北京地区闪电活动规律,而且对重点区域的雷电灾害防护提供实际的参考价值。利用BLNet 2015-2017年的闪电定位资料和闪电快电场变化资料,基于传输线模式对雷电流进行反演估算,统计分析了北京地区的地闪分布及回击峰值电流强度特征。分析结果表明:北京地区闪电发生频次最高的时段为20:00-23:00,地闪约占总闪的25.1%,其中正地闪约占总地闪的21.1%。正地闪回击峰值电流强度算术平均值为25.2 kA,几何平均值为15.2 kA,负地闪回击峰值电流强度算术平均值为14.2 kA,几何平均值为9.9 kA; 正、负地闪首次回击峰值电流强度算术平均值为17.6 kA,几何平均值为13.2 kA,正地闪首次回击峰值电流强度算术平均值为27.0 kA,几何平均值为17.7 kA,负地闪首次回击峰值电流强度算术平均值为15.1 kA,几何平均值为12.2 kA; 正地闪继后回击峰值电流强度算术平均值为22.2 kA,几何平均值为11.8 kA,负地闪继后回击峰值电流强度算术平均值为13.2 kA,几何平均值为9.6 kA; 对地闪首次回击和继后回击峰值电流强度进行统计分析,发现有37.5%多回击地闪至少有一次继后回击峰值电流强度大于首次回击峰值电流强度,地闪继后回击峰值电流强度大于首次回击峰值电流强度的继后回击数占总的继后回击数的24.7%; 峰值电流强度绝对值>100 kA的地闪主要分布在北京东部、东北部、西部、北部的山区以及北京城区。
- Abstract:
- Research on lightning detection in Beijing regions, analysis of lightning intensity and spatial and temporal distribution characteristics, it not only can understand the activity laws of lightning in Beijing regions, but also provide practical reference value for lightning protection in key area.The paper using the data of lightning fast electric field change collected by Beijing lightning network(BLNet)in Beijing regions during 2015-2017, based on transmission line mode to estimate lightning current, and analyze the distribution characteristics and return stroke peak current of CG lightning in Beijing regions. Analysis results indicate that 20:00-23:00 was the highest frequency of lightning occurrence in Beijing regions, the CG lightning was about 25.1% of the total lightning, and the positive CG lightning was about 21.1% of the total CG lightning. The positive CG lightning return-stroke average peak current intensity arithmetic mean was 25.2 kA, geometric mean was 15.2 kA, and the negative CG lightning return-stroke average peak current intensity arithmetic mean was 14.2 kA, geometric mean was 9.6 kA, and the CG lightning average peak current absolute value arithmetic mean was 17.6 kA, geometric mean was 13.2 kA; the positive CG lightning first return-stroke average peak current intensity arithmetic mean value was 27.0 kA, geometric mean was 17.7 kA, the negative CG lightning first return-stroke average peak current intensity arithmetic mean value was 15.1 kA, geometric mean was 12.2 kA; and the positive CG subsequent return-stroke average peak current intensity arithmetic mean value was 22.2 kA, geometric mean was 11.8 kA; and the negative CG subsequent return-stroke average peak current intensity arithmetic mean value was 13.2 kA, and geometric mean was 9.6 kA; analyzed the CG lightning peak current characteristics of the first return stroke and subsequent return stroke, found that the return stroke peak current of 37.5% multiple return stroke CG lightning at least one subsequent return peak current intensity is greater than the first return stroke, at the same time, it is also found the number of subsequent return stroke CG lightning peak current intensity is greater than first return stroke was about 24.7% of the total number of CG lightning return stroke. The stronger CG lightning,that lightning peak current intensity in the range of >100 kA, it is mainly distributed in the mountains of eastern, northeast, western and northern of Beijing and urban area.
参考文献/References:
[1] Romero C, Rachidi F, Paolone M, et al. Statistical Distributions of Lightning Currents Associated With Upward Negative Flashes Based on the Data Collected at the Säntis(EMC)Tower in 2010 and 2011[J]. IEEE Transactions on Power Delivery, 2013, 28(3):1804-1812.
[2] Cummins K L,Cramer J A,Biagi C J,et al.6.1 THE US NATIONAL LIGHTNING DETECTION NETWORK:POST-UPGRADE STATUS[J].2006,(1).
[3] Orville R E,Huffines G R,Burrows W R,et al.The North American lightning detection network(NALDN)—Analysis of flash data:2001-09[J].Monthly Weather Review,2011,139(5):1305-1322.
[4] Antonescu B,Burcea S.A cloud-to-ground lightning climatology for Romania[J].Monthly Weather Review,2010,138(2):579-591.
[5] 郄秀书,郭昌明,刘欣生.北京与兰州地区的地闪特征[J].高原气象,1990,9(4):388-394.
[6] 李京校,郭凤霞,沈永海,等.利用SAFIR资料对北京及其周边地区地闪参数的特征分析[J].高原气象,2013(5):1450-1459.
[7] 李如箭,逯曦,张华明,等.2008-2010年北京地区云地闪时空分布特征[J].气象与环境科学,2013(2):52-56.
[8] 张阳,张义军,孟青,等.北京地区正地闪时间分布及波形特征[J].应用气象学报,2010,21(4):442-449.
[9] 武智君,郄秀书,王东方,等.北京地区负地闪回击转移的电荷量[J].气候与环境研究,2016,21(3):247-257.
[10] 黎勋,郄秀书,刘昆,等.基于高时间分辨率快电场变化资料的北京地区地闪回击统计特征[J].气候与环境研究,2017,22(2):231-241.
[11] 王宇,郄秀书,王东方,等.北京闪电综合探测网(BLNET):网络构成与初步定位结果[J].大气科学,2015,39(3):571-582.
[12] Yu Wang,Xiushu Qie,Dongfang Wang,et al.Beijing Lightning Network(BLNET):A research and operational system for comprehensive lightning detection[J].Atmos.Res.,2016,171:121-132.
[13] Srivastava A,Y Tian,X Qie,et al.Performance assessment of Beijing Lightning Network(BLNET)and comparison with other lightning location networks across Beijing[J].Atmos.Res.Atmospheric Research,2017,197:76-83.
[14] Uman M A,Mclain D K.Lightning return stroke current from magnetic and radiation field measurements[J].Journal of Geophysical Research,1970,75(27):5143-5147.
[15] 郄秀书,余晔,王怀斌,等.中国内陆高原地闪特征的统计分析[J].高原气象,2001(4):395-401.
[16] 王俊芳,曹冬杰,卢红,等.西藏羊八井地区的闪电活动特征[J].高原气象,2011,30(3):831-836.
相似文献/References:
[1]王延慧,张建涛,何 清,等.新疆雷暴气候特征及其与地闪密度关系分析[J].成都信息工程大学学报,2019,(02):180.[doi:10.16836/j.cnki.jcuit.2019.02.012]
WANG Yanhui,ZHANG Jiantao,HE Qing,et al.Analysis on Climatic Characteristics of Thunderstorm and its Relationship
with Cloud-to-Ground Lightning Density in Xinjiang[J].Journal of Chengdu University of Information Technology,2019,(06):180.[doi:10.16836/j.cnki.jcuit.2019.02.012]
[2]魏 凡,李 超.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报,2018,(02):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
WEI Fan,LI Chao.Study on the Method of Setting Up Limited Flying area ofThunderstorm by Using Weather Radar Information[J].Journal of Chengdu University of Information Technology,2018,(06):205.[doi:10.16836/j.cnki.jcuit.2018.02.016]
[3]高志博,周筠珺,尹舒悦,等.成都地区一次超级单体风暴的观测分析与数值模拟[J].成都信息工程大学学报,2019,(04):392.[doi:10.16836/j.cnki.jcuit.2019.04.012]
GAO Zhibo,ZHOU Yunjun,YIN Shuyue,et al.A Mesoscale Numerical Simulation of a Supercell Storm in Chengdu Area[J].Journal of Chengdu University of Information Technology,2019,(06):392.[doi:10.16836/j.cnki.jcuit.2019.04.012]
[4]罗瑞婷,王硕甫,殷美祥.“4.17”广东雷雨大风冰雹天气成因分析[J].成都信息工程大学学报,2017,(02):220.[doi:10.16836/j.cnki.jcuit.2017.02.017]
LUO Rui-ting,WANG Shuo-fu,YIN Mei-xiang.Analysis of Causes of Guangdong's Thunderstorm and
Hail Happened on April 17, 2011[J].Journal of Chengdu University of Information Technology,2017,(06):220.[doi:10.16836/j.cnki.jcuit.2017.02.017]
备注/Memo
收稿日期:2018-03-12 基金项目:国家重点基础研究发展计划973计划资助项目(2014CB441401、2014CB441403); 国家科技支撑计划资助项目(2015BAC03B00); 国家自然科学基金资助项目(41575037); 北京市自然科学基金重点资助项目(8141002); 四川省教育厅资助项目(16CZ 0021、17ZB0087)。