PDF下载 分享
[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39-43.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(01):39-43.[doi:10.16836/j.cnki.jcuit.2019.01.009]
点击复制

一种改进型卷积神经网络的图像分类方法

参考文献/References:

[1] Oh J,Lee S,Lee E.A User Modeling Using Implicit Feedback for Effective Recommender System[C].International Conference on Convergence and Hybrid Information Technology.IEEE,2008:55-158.
[2] Boureau Y L,Roux N L,Bach F,et al.Ask the locals:Multi-way local pooling for image recognition[J].IEEE 2011 IEEE International Conference on Computer Vision(ICCV),2011,58(11):2651-2658.
[3] 郎波,黄静,危辉.利用多层视觉网络模型进行图像局部特征表征的方法[J].计算机辅助设计与图形学学报,2015,27(4):703-712.
[4] Le Cun,Y Bengio,G E Hinton,Deep learning[J].Nature,2015,521(7553):436-444.
[5] Hinton G,Deng L,Dong Y,et al.Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups[J].IEEE Signal Processing Magazine,2012,29(6):82-97.
[6] 吕刚,郝平,盛建荣.一种改进的深度神经网络在小图像分类中的应用研究[J].计算机应用与软件,2014,31(4):182-184.
[7] Ren S,He K,Grishick R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[8] Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks[C].International Conference on Neural Information Processing Systems,2012:1097-1105.
[9] Hinton G E.A practical guide to training restricted boltzmann machines[M].Springer Berlin Heidelberg,2012:599-619.
[10] Zhang J,Shan S,Kan M,et al.Coarse-to-fine auto-encoder networks for real-time face alignment[C].European Conference on Computer Vision,2014:1-16.
[11] 王强,李孝杰,陈俊.Supplement卷积神经网络的图像分类方法[J].计算机辅助设计与图形学学报,2018(3).
[12] Abadi M,Agarwal A,Barham P,et al.Tensorflow:Large-scale machine learning on heterogeneous distributed systems[J].arXiv preprint arXiv,2016.
[13] Kingma D P,Ba J.Adam:A Method for Stochastic Optimization[J].Computer Science,2014.

相似文献/References:

[1]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[2]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
 REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(01):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(01):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]黄 洁,王 燚.适用于侧信道分析的卷积神经网络结构的实验研究[J].成都信息工程大学学报,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
 HUANG Jie,WANG Yi.Experimental Study on the Structure of Convolutional Neural Network Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019,(01):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
[5]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
 FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(01):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[6]王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(03):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
 WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(01):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
[7]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
 YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(01):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[8]唐康健,文 展,李文藻.基于卷积神经网络的垃圾图像分类模型研究应用[J].成都信息工程大学学报,2021,36(04):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
 TANG Kangjian,WEN Zhan,LI Wenzao.Research and Application of Garbage Image Classification Model based on Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2021,36(01):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
[9]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
 YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
[10]蒲建飞,魏 维,吴帝勇,等.基于烟雾区域和轻量化模型的视频烟雾检测[J].成都信息工程大学学报,2023,38(03):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
 PU Jianfei,WEI Wei,WU Diyong,et al.Video Smoke Detection based on Smoke Area and Lightweight Model[J].Journal of Chengdu University of Information Technology,2023,38(01):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
[11]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(01):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[12]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(01):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[13]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(01):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]

备注/Memo

收稿日期:2018-06-22

更新日期/Last Update: 2019-01-15