ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(01):39-43.[doi:10.16836/j.cnki.jcuit.2019.01.009]
一种改进型卷积神经网络的图像分类方法
- Title:
- An Improved Convolution Neural Network Image Classification Method
- 文章编号:
- 2096-1618(2019)01-0039-05
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 基于Keras深度学习框架和卷积层取反操作,提出一种改进型的卷积神经网络结构,网络结构首层采用卷积层取反以增加有效特征信息的传递,有效结合Leaky ReLU激活函数传递至下一层,最后采用Softmax分类器实现图像分类。在两个公共数据集上,同传统的卷积神经网络模型做对比实验,实验结果表明,改进的卷积网络模型是有效的。
- Abstract:
- Based on Keras deep learning framework and convolution layer inverse operation,an improved Convolutional Neural Network structure is proposed in this paper. The first layer of the network structure uses convolutional layer inversion to increase the transmission of effective feature information.The LeakyReLU activation function is effectively combined to the next layer.Finally, the Softmax classifier is used to implement image classification. Compared with the traditional Convolution Neural Network model on two common datasets, the experimental results show that the improved convolution network model in this paper is effective.
参考文献/References:
[1] Oh J,Lee S,Lee E.A User Modeling Using Implicit Feedback for Effective Recommender System[C].International Conference on Convergence and Hybrid Information Technology.IEEE,2008:55-158.
[2] Boureau Y L,Roux N L,Bach F,et al.Ask the locals:Multi-way local pooling for image recognition[J].IEEE 2011 IEEE International Conference on Computer Vision(ICCV),2011,58(11):2651-2658.
[3] 郎波,黄静,危辉.利用多层视觉网络模型进行图像局部特征表征的方法[J].计算机辅助设计与图形学学报,2015,27(4):703-712.
[4] Le Cun,Y Bengio,G E Hinton,Deep learning[J].Nature,2015,521(7553):436-444.
[5] Hinton G,Deng L,Dong Y,et al.Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups[J].IEEE Signal Processing Magazine,2012,29(6):82-97.
[6] 吕刚,郝平,盛建荣.一种改进的深度神经网络在小图像分类中的应用研究[J].计算机应用与软件,2014,31(4):182-184.
[7] Ren S,He K,Grishick R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[8] Krizhevsky A,Sutskever I,Hinton G E.ImageNet classification with deep convolutional neural networks[C].International Conference on Neural Information Processing Systems,2012:1097-1105.
[9] Hinton G E.A practical guide to training restricted boltzmann machines[M].Springer Berlin Heidelberg,2012:599-619.
[10] Zhang J,Shan S,Kan M,et al.Coarse-to-fine auto-encoder networks for real-time face alignment[C].European Conference on Computer Vision,2014:1-16.
[11] 王强,李孝杰,陈俊.Supplement卷积神经网络的图像分类方法[J].计算机辅助设计与图形学学报,2018(3).
[12] Abadi M,Agarwal A,Barham P,et al.Tensorflow:Large-scale machine learning on heterogeneous distributed systems[J].arXiv preprint arXiv,2016.
[13] Kingma D P,Ba J.Adam:A Method for Stochastic Optimization[J].Computer Science,2014.
相似文献/References:
[1]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[2]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(01):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(01):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]黄 洁,王 燚.适用于侧信道分析的卷积神经网络结构的实验研究[J].成都信息工程大学学报,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
HUANG Jie,WANG Yi.Experimental Study on the Structure of Convolutional Neural Network Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019,(01):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
[5]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(01):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[6]王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(03):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(01):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
[7]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(01):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[8]唐康健,文 展,李文藻.基于卷积神经网络的垃圾图像分类模型研究应用[J].成都信息工程大学学报,2021,36(04):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
TANG Kangjian,WEN Zhan,LI Wenzao.Research and Application of Garbage Image Classification Model based on Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2021,36(01):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
[9]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
[10]蒲建飞,魏 维,吴帝勇,等.基于烟雾区域和轻量化模型的视频烟雾检测[J].成都信息工程大学学报,2023,38(03):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
PU Jianfei,WEI Wei,WU Diyong,et al.Video Smoke Detection based on Smoke Area and Lightweight Model[J].Journal of Chengdu University of Information Technology,2023,38(01):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
[11]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的
自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on
Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(01):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
[12]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(01):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[13]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(01):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
备注/Memo
收稿日期:2018-06-22