LIN Zouxing,HUA Wei,FAN Guangzhou,et al.A Diagnostic Analysis of the Heavy Precipitation Caused by Eastward Shift of Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(04):384-391.[doi:10.16836/j.cnki.jcuit.2019.04.011]
一次东移型西南低涡引发的强降水诊断分析
- Title:
- A Diagnostic Analysis of the Heavy Precipitation Caused by Eastward Shift of Southwest Vortex
- 文章编号:
- 2096-1618(2019)04-0384-08
- Keywords:
- atmospheric science; mesoscale meteorology; Southwest vortex; heavy rain; non-geostrophic wet-Q; wet-potential vortex; diagnostic analysis
- 分类号:
- P458
- 文献标志码:
- A
- 摘要:
- 为研究由西南涡东移引发暴雨的中尺度特征,利用NCEP逐日4次1°×1°格点FNL再 分析资料和中国自动气象站与CMORPH融合0.1°×0.1°格点逐时降水资料,采用非地转 湿Q和湿位涡诊断方法,对2015年7月14~17日中国中部一次由西南涡引发的自西向东 强降水过程进行了诊断分析。结果表明:受中高纬500 hPa低槽、低纬副高西伸北抬、沿低槽 南下的冷空气以及来自孟湾暖湿空气的影响,为此次降水提供了非常有利的条件。非地转湿 Q散度较好地反映了低涡降水的落区和强度变化,对未来6 h降水落区和强度的预报具 有较好的指示意义; 湿Q辐合区与未来6 h降水落区大致相符,且暴雨中心与辐合中心 相对应,对应上空上升运动明显,对激发对流运动有重要作用。西南涡降水的发生、发展与湿 位涡的时空演变呈现良好的对应关系; 其中,对流层中低层MPV1上正下负叠加配置促进了不 稳定能量的释放,有利于的暴雨发生和发展,而MPV1和MPV2的重叠区域有利于垂直涡度的增长 ,是降水落区预报的警戒区。
- Abstract:
- In order to study the mesoscale characteristics of the heavy rain caused by the southwest vortex eastward movement, the NCEP/NCAR 1°×1° grid reanalysis data and China Automatic Weather Station with CMORPH fusion 0.1 °×0.1° precipitation data, the non-geostrophic Q and wet-potential vortex diagnostic methods were used to analysis the precipitation from the west to the east caused by the southwest vortex in central China from July 14 to 17, 2015. The results show that Influenced by the 500 hPa trough in the middle and high latitudes, the northward extension of the subtropical high in the low latitudes, the cold air along the south of the trough and the warm and humid air from Bengal, the precipitation is very favorable. The non-geostrophic wet- Q divergence reflects the precipitation area and intensity change of low-vortex precipitation, and has a good indication for the prediction of precipitation area and intensity in the next 6 hours. The wet Q convergence area is approximately consistent with the precipitation area in the next 6 hours, and the rainstorm center corresponds to the convergence center, which corresponds to the obvious upward motion over the sky, and plays an important role in stimulating convective motion. The occurrence and development of Southwest Vortex precipitation have a good correspondence with the spatial and temporal evolution of moist potential vorticity. The positive and negative superposition of MPV1 in the middle and lower troposphere promotes the release of unstable energy and is beneficial to the occurrence and development of rainstorm. The overlap area of MPV1 and MPV2 is favorable to the growth of vertical vorticity and is a warning area for precipitation forecast.
参考文献/References:
[1] 朱乾根.天气学原理和方法[M].4版.北京:气象出版社,2015:371-374.
[2] 陈艳.西南低涡的气候特征及与降水的关系研究[D].南京:南京信息工程大学,
2007.
[3] 卢敬华.西南低涡概论[M].北京:气象出版社,1986:1-270.
[4] 高守亭.流场配置及地形对西南低涡形成的动力作用[J].大气科学,1987,11
(3):39-47.
[5] 赵平,孙淑清.一次西南低涡形成过程的数值试验和诊断(一):地形动力作用和潜热
作用对西南低涡影响的数值试验对比分析[J].大气科学,1991(6):46-52.
[6] 何光碧.西南低涡研究综述[J].气象,2012,38(2):155-163.
[7] 母灵,李国平.复杂地形对西南低涡生成和移动影响的数值试验分析[J].成都信息
工程学院学报,2013,28(3):241-248.
[8] 吴国雄,刘还珠.全型垂直涡度倾向方程和倾斜涡度发展[J].气象学报,1999(1):1
-15.
[9] 赵思雄,傅慎明.2004年9月川渝大暴雨期间西南低涡结构及其环境场分析[J].大气
科学,2007,31(6):1059-1075.
[10] 邹波,陈忠明.一次西南低涡发生发展的中尺度诊断[J].高原气象,2000,19
(2):141-149.
[11] 陈鹏,徐海明,林永辉.涡度收支与潜热释放对西南低涡形成的作用[J].大气科学
学报,2014,37(5):575-584.
[12] 刘还珠,张绍晴.湿位涡与锋面强降水天气的三维结构[J].应用气象学报,1996,7
(3):275-284.
[13] 朱禾,邓北胜,吴洪.湿位涡守恒条件下西南涡的发展[J].气象学报,2002,60
(3):343-351.
[14] 陈栋,李跃清,黄荣辉.在“鞍”型大尺度环流背景下西南低涡发展的物理过程分
析及其对川东暴雨发生的作用[J].大气科学,2007,31(2):185-201.
[15] 李国平,刘行军.西南低涡暴雨的湿位涡诊断分析[J].应用气象学报,1994
(3):354-360.
[16] 段旭,李英.滇中暴雨的湿位涡诊断分析[J].高原气象,2000,19(2):253-259.
[17] 高守亭,雷霆,周玉淑,等.强暴雨系统中湿位涡异常的诊断分析[J].应用气象学报
,2002,13(6):662-670.
[18] 蒙伟光,王安宇,李江南,等.华南暴雨中尺度对流系统的形成及湿位涡分析[J].大
气科学,2004,28(3):330-341.
[19] 任余龙,寿绍文,李耀辉.西北区东部一次大暴雨过程的湿位涡诊断与数值模拟
[J].高原气象,2007,26(2):344-352.
[20] 田珍富,腾俏彬.一次局地特大暴雨湿位涡的中尺度分析[J].热带气象学
报,1998,15(2):49.
[21] 姚秀萍,于玉斌.非地转湿Q矢量及其在华北特大台风暴雨中的应用[J].气象学
报,2000,58(4):436-446.
[22] 颜琼丹,蔡亲波.非地转湿Q矢量在台风“云娜”暴雨过程中的分析应用[J].热带
气象学报,2006,22(5):505-509.
[23] 高留喜,丛春华,李本亮.地转湿Q矢量在北上台风"桃芝"造成山东大暴雨中的应用
[J].热带气象学报,2008,24(5):533-538.
[24] 傅灵艳,岳彩军,黄亿,等.应用湿Q矢量分解方法诊断分析"圣帕"(2007)台风暴雨
[J].热带气象学报,2010,26(5):598-605.
[25] 郭荣芬,鲁亚斌,李燕,等.“伊布都”台风影响云南的暴雨过程分析[J].高原气象
,2005,24(5):784-791.
[26] 黄楚惠,李国平.基于螺旋度和非地转湿Q矢量的一次东移高原低涡强降水过程分
析[J].高原气象,2009,28(2):319-326.
[27] 李山山,李国平.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析
[J].高原气象,2017,36(2):317-329.
[28] 刘运成,王澄海,隆霄.非地转湿Q矢量在川北大暴雨过程分析中的应用[J].山地学
报,2008,26(4):445-452.
[29] 张雪琦,白爱娟.“15·8”川东西南涡暴雨的Q矢量分析[J].高原山地气象研
究,2015,35(3):32-38.
[30] Hoskins B J,Draghici I,Davies H C.A new look at the M-equation
[J].Quarterly Journal of the Royal Meteorological Society,1978,104(439):31-38.
[31] 张兴旺.湿Q矢量表达式及其应用[J].气象,1998,24(8):3-7.
[32] 岳彩军,寿亦萱,寿绍文,等.Q矢量的改进与完善[J].热带气象学报,2003,19
(3):308-316.
[33] 岳彩军,寿绍文,周军.非地转Q矢量的改进及其应用[J].南京气象学院学
报,2007,30(1):86-93.
[34] 刘汉华,寿绍文,周军.非地转湿Q矢量的改进及其应用[J].大气科学学
报,2007,30(1):86-93.
[35] 屠妮妮,陈静,何光碧.高原东侧一次大暴雨过程动力热力特征分析[J].高原气
象,2008,27(4):796-806.
[36] Bennetts D A,Hoskins B J.Conditional symmetric instability-a possible
explanation for frontal rainbands[J].Quarterly Journal of the Royal
Meteorological Society,2010,105(446):945-962.
[37] 黄楚惠,顾清源,李国平,等.一次高原低涡东移引发四川盆地暴雨的机制分析[J].
高原气象,2010,29(4):832-839.
[38] 吴国雄,蔡雅萍.湿位涡和倾斜涡度发展[J].气象学报,1995,53(4):387-405.
[39] 陈忠明,闵文彬,缪强,等.高原涡与西南涡耦合作用的个例诊断[J].高原气
象,2004,23(1):75-80.
[40] 范可,琚建华,范学峰.湿位涡诊断分析在东南亚强降水中的应用[J].气象科
技,2003,31(1):23-28.
[41] 陶丽,李国平.一次西南低涡诱发川南特大暴雨的综合诊断[J].气象科技进
展,2011,1(3):47-51.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(04):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(04):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(04):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(04):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[5]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[6]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[7]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(04):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[8]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(04):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[9]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(04):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[10]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(04):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
[11]吕伟绮,谌 芸,李晟祺,等.黄淮地区一次暖区大暴雨的中尺度特征分析[J].成都信息工程大学学报,2017,(04):391.[doi:10.16836/j.cnki.jcuit.2017.04.009]
LV Wei-qi,CHEN Yun,LI Cheng-qi,et al.Mesoscale Analysis on a Warm Sector Torrential Rain Event in Huang-Huai Area[J].Journal of Chengdu University of Information Technology,2017,(04):391.[doi:10.16836/j.cnki.jcuit.2017.04.009]
备注/Memo
收稿日期:2018-07-12 基金项目:国家自然科学基金资助项目(41775072、91537214、 41405069); 四川省教育厅重 点资助项目(16ZA0203)