YANG Di,WEN Chengyu.Research on Emotional Analysis Model based on Association Rules[J].Journal of Chengdu University of Information Technology,2019,(05):501-505.[doi:10.16836/j.cnki.jcuit.2019.05.011]
结合关联规则的情感分析模型研究
- Title:
- Research on Emotional Analysis Model based on Association Rules
- 文章编号:
- 2096-1618(2019)05-0501-05
- Keywords:
- emotional analysis; data mining; association rules; SVM; NB
- 分类号:
- TP391
- 文献标志码:
- A
- 摘要:
- 针对网络中各类格式不规范的评论,提出了一种结合关联规则的情感分析模型,提高网络评论的情感分析精度。即在分析评论的情感倾向基础上,深入挖掘评论对象的所有关联特征,充分考虑文本中每个词对总体情感倾向的影响。该模型首先选择一类有明确评论对象的数据集,采用传统的特征提取方式获得候选特征,再用关联规则挖掘出评论对象的关联特征,最后采用SVM和NB算法进行情感分类。通过实验测试,并对结果对比分析可知:该模型可以有效地提高网络评论情绪分类的准确率、召回率、F值。
- Abstract:
- For varieties of non-standard format comments on the Internet, An emotional analysis model combined with association rule is proposed to improve the emotional analysis accuracy of Internet commentsBased on the analysis of the emotional tendency of comments, it deeply explores all the related features of the comment objects, and fully considers the effect of each word in the text on the overall emotional tendency. Firstly, a kind of dataset with clear comment object is selected, and the candidate feature is obtained by traditional feature extraction method. Then, the association feature of the comment object is mined by association rules, and finally uses SVM and NB algorithm to classify emotion.The experimental examination and comparative analysis of result suggest that this model can effectively improve the accuracy, recall rate and F value of emotional classification of Internet comments.
参考文献/References:
[1] 林钦和,刘钢,陈荣华. 基于情感计算的商品评论分析系统[J].计算机应用与软件,2014,31(12):39-44.
[2] 周咏梅,杨佳能,阳爱民.面向文本情感分析的中文情感词典构建方法[J].山东大学学报(工学版),2013,43(6):27-33.
[3] 赵刚,徐赞.基于机器学习的商品评论情感分析模型研究[J].信息安全研究,2017,3(2):166-170.
[4] 周杰,林琛,李弼程. 基于机器学习的网络新闻评论情感分类研究[J]. 计算机应用,2010,30(4):1011-1014.
[5] 姜杰,夏睿. 机器学习与语义规则融合的微博情感分类方法[J]. 北京大学学报(自然科学版),2017,53(2):247-254.
[6] 于重重,操镭,尹蔚彬,等. 吕苏语口语标注语料的自动分词方法研究[J]. 计算机应用研究,2017,34(5):1325-1328.
[7] 李言武,郑勇. 基于语义扩展的汉语全覆盖关键词提取算法[J]. 控制工程,2018,25(7):1326-1334.
[8] John D. Holt,Soon MChung. Multipass Algorithms for Mining Association Rules inTextDatabases[J]. Knowledge and Information Systems,2001,3(2):13-17.
[9] 刘爽,赵景秀,杨红亚,等. 文本情感分析综述[J]. 软件导刊,2018,17(6):1-4.
[10] 杨经,林世平. 基于SVM的文本词句情感分析[J]. 计算机应用与软件,2011,28(9):225-228.
[11] Hang C,Mittal V,Datar M. Comparative experiments on sentiment classification for online product reviews [C].Proceedings of the 21 National Conference on Artificial Intelligence. New York:Mountation View,2006:1265-1270.
[12] 刘思,朱福喜,阳小兰,等. 基于分类关联规则的微博情绪分析[J]. 计算机工程与设计,2016,37(12):3361-3365.
[13] 明均仁. 融合语义关联挖掘的文本情感分析算法研究[J]. 图书情报工作,2012,56(15):99-103.
[14] LipikaDey,SkMirajulHaque. Opinion mining from noisy text data[J]. International Journal on Document Analysis and Recognition(IJDAR),2009,12(3):32-34.
[15] Ramanathan Narayanan, Bing Liu, AlokChoudhary. Sentiment Analysis of Conditional Sentences[C]. In:Proceedings of the 2009 Conference on EMNLP. Morristown,USA:ACL,2009:180-189.
相似文献/References:
[1]黄冠英,郑皎凌.基于变长隐马尔科夫模型的维基词条编辑微过程挖掘[J].成都信息工程大学学报,2018,(01):34.[doi:10.16836/j.cnki.jcuit.2018.01.007]
HUANG Guan-ying,ZHENG Jiao-ling.Wikipedia Entries Editing Micro-process Mining based onVariable Length Hidden Markov Model[J].Journal of Chengdu University of Information Technology,2018,(05):34.[doi:10.16836/j.cnki.jcuit.2018.01.007]
[2]赵锦阳,卢会国,蒋娟萍,等.基于改进决策树的故障诊断方法研究[J].成都信息工程大学学报,2018,(06):624.[doi:10.16836/j.cnki.jcuit.2018.06.005]
ZHAO Jin-yang,LU Hui-guo,JIANG Juan-ping,et al.Research on Fault Diagnosis Method based on Improved Decision Tree[J].Journal of Chengdu University of Information Technology,2018,(05):624.[doi:10.16836/j.cnki.jcuit.2018.06.005]
[3]李宝林,周 坤,李仕伟.一种基于M-Bisearch的最大频繁项集挖掘算法研究[J].成都信息工程大学学报,2016,(05):463.
LI Bao-lin,ZHOU Kun,LI Shi-wei.Research on Mining Algorithm of Maximal Frequent Itemsets based on M-blsearch[J].Journal of Chengdu University of Information Technology,2016,(05):463.
[4]吴东华,常 征,何 嘉.基于用户行为序列模式的性别分析与预测[J].成都信息工程大学学报,2016,(增刊1):7.
[5]张碧依,陶宏才.基于XLNet-BiLSTM模型的中文影评情感分析[J].成都信息工程大学学报,2021,36(03):264.[doi:10.16836/j.cnki.jcuit.2021.03.004]
ZHANG Biyi,TAO Hongcai.Sentiment Analysis of Chinese Film Review based on XLNet-BiLSTM Model[J].Journal of Chengdu University of Information Technology,2021,36(05):264.[doi:10.16836/j.cnki.jcuit.2021.03.004]
[6]陈宏松,安俊秀,陶全桧,等.基于BERT-VGG16的多模态情感分析模型[J].成都信息工程大学学报,2022,37(04):379.[doi:10.16836/j.cnki.jcuit.2022.04.003]
CHEN Hongsong,AN Junxiu,TAO Quanhui,et al.Multi-modal Sentiment Analysis Model based on BERT-VGG16[J].Journal of Chengdu University of Information Technology,2022,37(05):379.[doi:10.16836/j.cnki.jcuit.2022.04.003]
备注/Memo
收稿日期:2019-04-09