WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(03):253-258.[doi:10.16836/j.cnki.jcuit.2020.03.001]
基于优化VGG19卷积神经网络的异常检测模型研究
- Title:
- Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network
- 文章编号:
- 2096-1618(2020)03-0253-06
- Keywords:
- network attack; anomaly detection; convolutional neural network; VGG19
- 分类号:
- TP391.1
- 文献标志码:
- A
- 摘要:
- 互联网服务已经成为人们生活中必不可少的一部分,但由于网络攻击方式的不断增多,使得网络安全问题日益严重。异常检测是对Web攻击进行检测的方式,基于优化VGG19神经网络建立了一种新的异常检测模型,并在ISCX2012数据集上进行训练,取得了较好的检测效果。
- Abstract:
- Internet service has become an essential part of people’s life, but due to the increasing ways of network attacks, network security problems become increasingly serious. Anomaly detection is a very effective way to detect network attacks. In this paper, an anomaly detection model based on optimized VGG19 convolutional neural network is established, and the train and test on ISCX2012 dataset are conducted. The experiment results show that the novel model has a good detection effect for abnormal requests.
参考文献/References:
[1] 韩言平.SQL注入智能检测工具的设计与实现[D].北京:北京邮电大学,2019.
[2] 曹棋敏.基于Web日志的入侵检测模型构建[D].广州:华东师范大学,2019.
[3] 冯秋燕.基于Web应用的日志异常检测与用户行为分析研究[D].广州:华南理工大学,2019.
[4] Komviriyavut T,Sangkatsanee P,Wattanapongsakorn N,et al.Network Intrusion detection and classification with decision tree and rule based approach[C].Communications and Information Technology,ISCIT 2009.9th International Symposium on IEEE,2009:2046-1050.
[5] Sahu S,Mehtre B M.Network intrusion detection system using J48 Decision Tree[C].Advances in Computing,Communications and Informatics(ICACCI),2015 International Conference on IEEE,2015:2023-2026.
[6] Livadas C,Walsh R,Lapsley D,et al.Using machine learning Techniques to identity botnet traffic[C].Local Computer Networks,Proceedings 2006 31st IEEE Conference on IEEE,2006:967-974.
[7] Reddy R R,Ramadevi Y,Sunitha K V N.Enhanced anomaly Detection using ensemble support vector machine[C].International Conference on Big Data Analytics & Computational Intelligence,2017:300-303.
[8] 赵夫群.基于混合核函数的LSSVM网络入侵检测方法[J].现代电子技术,2015,38(21):96-99.
[9] 张宝安.基于深度学习的入侵检测研究与实现[D].北京:北京邮电大学,2019.
[10] 彭鑫.基于卷积神经网络的特定场景下人脸识别研究[D].西安:西安理工大学,2019.
[11] 熊梦渔.基于深度神经网络的图像融合方法研究[D].无锡:江南大学,2019.
[12] Peter Harrington.Machine Learning in Action[M].Manning Publications,2012.
[13] W Jin,Z J Li,L S Wei,et al.The improvements of BP neural network learning algorithm[J].International Conference on Signal Processing Proceedings.IEEE,2002(3):1647-1649.
[14] 李媛媛.基于深度学习的图像分类及目标定位[D].北京:北京邮电大学,2018.
[15] 张成.小样本的入侵检测技术研究与应用[D].成都:电子科技大学,2019.
相似文献/References:
[1]蒋梦丹,林宏刚,曹鹤鸣.基于业务逻辑思想的异常检测研究[J].成都信息工程大学学报,2019,(02):130.[doi:10.16836/j.cnki.jcuit.2019.02.006]
JIANG Mengdan,LIN Honggang,CAO Heming.Research on Abnormal Detection based on Business Logic[J].Journal of Chengdu University of Information Technology,2019,(03):130.[doi:10.16836/j.cnki.jcuit.2019.02.006]
[2]徐颂捷,何建新,黎志波,等.基于天气雷达标准输出控制器的故障诊断方法研究[J].成都信息工程大学学报,2019,(03):257.[doi:10.16836/j.cnki.jcuit.2019.03.009]
XU Songjie,HE Jianxin,LI Zhibo,et al.Research on Fault Diagnosis Method based on Weather Radar Standard Output Controller[J].Journal of Chengdu University of Information Technology,2019,(03):257.[doi:10.16836/j.cnki.jcuit.2019.03.009]
备注/Memo
收稿日期:2020-02-27 基金项目:国家自然科学基金资助项目(61806170)