JI Yuping,DENG Xiaobo,HUANG Qihong,et al.Spatial and Temporal Distribution of Atmospheric CO inSouthwest China based on Satellite Data[J].Journal of Chengdu University of Information Technology,2020,35(06):616-620.[doi:10.16836/j.cnki.jcuit.2020.06.006]
基于卫星数据的西南地区大气CO 时空分布特征的分析
- Title:
- Spatial and Temporal Distribution of Atmospheric CO in Southwest China based on Satellite Data
- Keywords:
- satellite remote sensing; Southwest China; atmospheric CO; TROPOMI; spatial and temporal distribution
- 分类号:
- TP79
- 文献标志码:
- A
- 摘要:
- 大气中的一氧化碳(CO)是影响气候变化的重要大气微量气体,研究大气中的CO浓度对环境质量的监测有着重要意义。利用对流层观测仪(TROPOMI)L2级产品的CO柱总量数据,得出中国区域在2019年的大气CO分布特征,CO高值在中国东部沿海地区,西部较低。结合西南地区5省区市:西藏自治区、云南省、四川省、重庆市、贵州省的总人口和地区生产总值数据,分析中国西南区域在2019年的CO时空分布和季节变化特征。结果表明:西藏自治区和四川西部CO为最低值,在2019年的变化不明显,四川东部和重庆市CO含量最高,云南、贵州省最高值在春季,夏秋季降低。选取西南地区中的青藏高原东南部和四川盆地2019年的CO月均值,四川盆地为青藏高原的2~3倍,变化趋势明显,青藏高原东南部一年内趋于平稳。
- Abstract:
- Carbon monoxide(CO)is an important atmospheric trace gas that affects climate change in the atmosphere. The study of CO concentration in the atmosphere is of great significance to the monitoring of environmental quality.With the total CO column data of TROPOMI L2 products,the atmospheric CO distribution characteristics in China in 2019 are obtained. The high CO values are in the eastern coastal areas of China and lower in the west. Based on the data of the total population and gross regional product of the five provinces and municipalities in the southwest: Tibet Autonomous Region,Yunnan Province,Sichuan Province,Chongqing City,and Guizhou Province,the temporal and spatial distribution of CO in Southwest China in 2019 and its seasonal changes are analyzed.The results show that: The lowest values were found in Tibet Autonomous Region and western Sichuan province,and the changes in 2019 are not obvious.The CO total column was highest in eastern Sichuan and Chongqing,and Yunnan and Guizhou have the highest values in spring,and it falls in summer and autumn.The southeast of the Qinghai-Tibet Plateau in the southwestern region and the Sichuan Basin were selected to calculate the monthly mean values of CO in 2019. The monthly average values of the Sichuan Basin were 2 to 3 times that of the the southeastern Qinghai-Tibet Plateau, and the change trend was obvious, while in the southeastern Qinghai-Tibet Plateau was stable within a year.
参考文献/References:
[1] 田彪,丁明虎,孙维君,等.大气CO研究进展[J].地球科学进展,2017,32(1):35-43.
[2] Borsdorff T,Andrasec J,de Brugh J A,et al.Detection of carbon monoxide pollution from cities and wildfires on regional and urban scales:the benefit of CO column retrievals fromSciamachy2.3 μm measurements under cloudy conditions[J].Atomspheric Measurement Techniques,2018,11(5):2553-2565.
[3] Holloway T,Levy H II,Kasibhatla P,et al.Global distribution of carbon monoxide[J].Journal of Geophysical Research,2000,105(5):12123-12147.
[4] Reichle JR H,Connors V S.The Mass of CO in the Atmosphere during October 1984, April 1994,and October 1994[J].Journal of The Atmospheric Sciences,1999,56(1):307-310.
[5] Tangborn A,Stajner I,Buchwitz M,et al.Assimilation of SCIAMACHY total column CO observations:Global and regional analysis of data impact[J].Journal of Geophysical Research,2009,114(4):1-11.
[6] Chandra N,Venkataramani S,Lal S,et al.Effects of convection and long-range transport on the distribution of carbon monoxide in the troposphere over India[J].Atmospheric Pollution Research,2016,7(5):775-785.
[7] Qian L,Hua Feng S,AiMei S,et al.Distribution and Variation of Carbon Monoxide in the Tropical Troposphere and Lower Stratosphere[J].Distribution and Variation of Carbon Monoxide in the Tropical Troposphere and Lower Stratosphere,2014,7(3):218-223.
[8] 王甜甜,陈良富,陶金花,等.生物质燃烧对中国东北地区CO浓度的影响研究[J].遥感技术与应用,2016,31(2):297-306.
[9] 赵学良,池天河.基于MOPITT数据的CO浓度时空分布规律研究[J].环境科学技术,2018,41(4):71-76.
[10] 李旭文,张悦,姜晟,等.“哨兵-5P”卫星TROPOMI传感器在江苏省域大气污染监测中的初步应用[J].环境监测与预警,2019,11(2):10-16.
[11] 方圆圆,赵春生,李成才,等.利用对流层污染测量仪研究2002年东亚地区CO总量分布特征[J].大气科学,2005,29(3):363-369.
[12] 常越,邓小波,刘海磊,等.中国区域近地面及高空CH4时空分布特征研究[J].环境科学与技术,2017,40(1):161-166.
[13] 王占山,李云婷,张大伟,等.2014年北京市CO浓度水平和时空分布[J].中国环境监测,2018, 34(3):14-19.
[14] Hochstaffl P,Schreier F,Lichtenberg G,et al.Validation of Carbon Monoxide Total ColumnRetrievals from SCIAMACHY Observations with NDACC/TCCON Ground-Based Measurements[J].remote sensing,2018,223(10):1-32.
相似文献/References:
[1]黄 健,李谢辉,王 磊,等.基于SPEI指数的西南地区近42 a干旱时空变化分析[J].成都信息工程大学学报,2020,35(03):359.[doi:10.16836/j.cnki.jcuit.2020.03.018]
HUANG Jian,LI Xiehui,WANG Lei,et al.Analysis on Spatial and Temporal Variations of Drought in Southwest of China in Recent 42 Years based on SPEI Index[J].Journal of Chengdu University of Information Technology,2020,35(06):359.[doi:10.16836/j.cnki.jcuit.2020.03.018]
[2]粟 运,毛文书,师春香,等.西南地区近60年夏季降水的区域特征[J].成都信息工程大学学报,2020,35(05):560.[doi:10.16836/j.cnki.jcuit.2020.05.014]
SU Yun,MAO Wenshu,SHI Chunxiang,et al.Regional Characteristics of Summer Precipitation in Southwest China in Recent 60 Years[J].Journal of Chengdu University of Information Technology,2020,35(06):560.[doi:10.16836/j.cnki.jcuit.2020.05.014]
[3]贾何佳,李谢辉,王 磊,等.西南地区干湿演变特征及其对ENSO事件的响应[J].成都信息工程大学学报,2021,36(04):451.[doi:10.16836/j.cnki.jcuit.2021.04.015]
JIA Hejia,LI Xiehui,WANG Lei,et al.Characteristics of Dry-wet Evolution and its Response to ENSO Events in Southwestern China[J].Journal of Chengdu University of Information Technology,2021,36(06):451.[doi:10.16836/j.cnki.jcuit.2021.04.015]
[4]陈瑶瑶,邓小波,黄启宏,等.基于FY-3D和FY-4A的气温时空融合[J].成都信息工程大学学报,2022,37(03):284.[doi:10.16836/j.cnki.jcuit.2022.03.008]
CHEN Yaoyao,DENG Xiaobo,HUANG Qihong,et al.Temporal and Spatial Fusion of Air Temperature based on FY-3D and FY-4A[J].Journal of Chengdu University of Information Technology,2022,37(06):284.[doi:10.16836/j.cnki.jcuit.2022.03.008]
[5]何 科,白爱娟,胡秀清.基于TC方法青藏高原卫星与ERA5水汽误差分析及融合[J].成都信息工程大学学报,2022,37(04):449.[doi:10.16836/j.cnki.jcuit.2022.04.014]
HE Ke,BAI Aijuan,HU Xiuqing.Analysis and Fusion of Water Vapor Error between Satellite and ERA5 over the Tibetan Plateau based on TC Method[J].Journal of Chengdu University of Information Technology,2022,37(06):449.[doi:10.16836/j.cnki.jcuit.2022.04.014]
[6]周正斌,张艺丹,罗 坤,等.基于高分辨率再分析资料的西南地区风资源特征分析[J].成都信息工程大学学报,2023,38(01):75.[doi:10.16836/j.cnki.jcuit.2023.01.012]
ZHOU Zhengbin,ZHANG Yidan,LUO Kun,et al.Analysis of Wind Resources in Southwest China based on High-resolution Reanalysis Data[J].Journal of Chengdu University of Information Technology,2023,38(06):75.[doi:10.16836/j.cnki.jcuit.2023.01.012]
备注/Memo
收稿日期:2020-05-28 基金项目:四川省科技计划重点研发资助项目(2019YFG0126)