ZHAO Shengnan,WANG Lei,LI Xiehui,et al.Numerical Simulation of a Heavy Rain in Nanjing[J].Journal of Chengdu University of Information Technology,2020,35(06):678-689.[doi:10.16836/j.cnki.jcuit.2020.06.015]
一次南京特大暴雨的数值模拟及Q矢量诊断
- Title:
- Numerical Simulation of a Heavy Rain in Nanjing
- 分类号:
- P456.7
- 文献标志码:
- A
- 摘要:
- 为研究2018年7月5日南京暴雨天气过程,利用NCEP(national centers environmental prediction)全球客观分析资料、中国气象数据网提供的逐时降水数据以及WRF(the weather research and forecasting)中尺度数值模式对2018年7月5日南京特大暴雨天气过程进行诊断分析。结果表明:WRF模式对暴雨发生的时间、强度以及落区模拟效果较好,地面风场辐合是本次暴雨过程的关键触发机制,低层辐合加强垂直上升运动,使对流发展旺盛,进而形成暴雨。华北高压南侧的东北气流与西南低空急流输送的暖湿气流在华东北部交绥形成切变线,切变线上的中尺度低涡稳定少动,为暴雨提供动力机制。沿低空急流的中尺度大风速中心在南京上空形成风速辐合,加强低层水汽横向输送,为暴雨提供水汽条件。700 hPa非地转湿Q矢量负散度区对未来6 h降水落区具有重要的指示意义,降水中心位于Q矢量负散度梯度大值区。用Q矢量锋生函数差值表示锋生函数的变化,具有中尺度特征,对预报降水的落区具有更好的指示意义。
- Abstract:
- To analyze the process of the heavy rain in Nanjing on July 5, 2018, the NCEP(National Centers Environmental Prediction)global objective analysis data, the mid-time hourly precipitation data provided by the China Meteorological Data Network, and the WRF(The Weather Research and Forecasting)mesoscale numerical model were used. The results show that the occurrence time, intensity and effect of the rainstorm simulated by the WRF model are good. A convergence of the ground wind field in the rainfall area is the key dynamic forcing mechanism for the weather process. The low-level convergence causes a strong vertical ascending, which makes the convection develop vigorously to form the heavy rain. The shear line formed between the northeast air flow in the south of the North China high and the warm and humid air flow in the southwest low level jet in the north of East China with a stable mesoscale low vortex providing a dynamic mechanism of the rain. The mesoscale high wind speed center along the low-level jet stream forms a wind convergence over Nanjing, which enhances the horizontal transport of low-level water vapor to provide the water vapor condition for the rain. The 700 hPa ageostrophic wet Q-vector negative divergence zone has obvious indication significance for the future6 h precipitation zone, and the precipitation center is located in the large value zone of Q-vector negative divergence gradient. The difference value of Q vector frontogenesis function shows that the change of frontogenesis function has Mesoscale characteristics, which is of better significance to predict the falling area of precipition.
参考文献/References:
[1] 赵思雄.近年来江淮流域致洪暴雨特征分析[J].气象与减灾研究,2011(1):4-8.
[2] Yuan F,Chen W,Zhou W.Analysis of the Role Played by Circulation in the Persistent Precipitation over South China in June 2010[J].Advances in atmospheric sciences,2012,29(4):769-781.
[3] 侯淑梅,孙兴池,范苏丹,等.切变线冷区和暖区暴雨落区分析[J].大气科学学报,2014,37(3):333-343.
[4] Cui T,Wu G H,Zhao Y J,et al.Study on Mesoscale Circulation Characteristics of Heavy Rainstorm in Wangmo County in Qianxinan on June 6, 2011[J].Meteorology and Environmental Research,2011(11):13-16,22.
[5] Zheng G Y,Chen J,Ge G Q.Typical Structure,Variety and Multi-Scale Characteristics of Meiyu Front[J].Acta Meteorologica Sinica,2008,22(2):187-201.
[6] Shinoda T,Amano T,Uyeda H,et al.Structure of Line-Shaped Convective Systems Obliquely Training to the Baiu Front Observed around the Southwest Islands of Japan[J].Journal of the Meteorological Society of Japan,2009,87(4):739-745.
[7] 赵宇,裴昌春,杨成芳.梅雨锋暴雨中尺度对流系统触发和组织化的观测分析[J].气象学报,2017,75(5):700-716.
[8] Huang Y J,Liu,Liu Y B,Liu Y W. Mechanisms for a Record-Breaking Rainfall in the Coastal Metropolitan City of Guangzhou,China: Observation Analysis and Nested Very Large Eddy Simulation With the WRF Model[J].Journal of Geophysical Research Atmospheres,2019,124(3):1370-1391.
[9] 李小兰,陈军,喻义军,等.低空暖式切变线引发局地特大暴雨成因分析[J].贵州气象,2016,40(4):16-22.
[10] 胡伯威,彭广.暖切变型江淮梅雨锋结构及其形成和维持机制[J].大气科学,1996,20(4):463-472.
[11] Shen H F,Zhai G Q,Zhu Y,et al.Numerical study of a mesoscale vortex in the planetary boundary layer of the Meiyu front[J].Acta Meteor.Sinica,2012,26(6):788-802.
[12] 王璐璐,孙建华,陈潇潇,等.梅雨期一次线状对流系统的结构特征研究[J].热带气象学报,2015,31(6):766-781.
[13] 房春花,唐立,陈春,等.一场南京暴雨的机理和影响区数值模拟[C].2010年航空器适航与空中交通管理学术年会,2010.
[14] 沈杭锋,翟国庆,尹金方,等.长江下游梅汛期中尺度涡旋特征分析[J].大气科学,2013,37(4):923-932.
[15] Ran L,Chen C.Diagnosis of the forcing of inertial-gravity waves in a severe convection system[J].Advances in Atmospheric Sciences,2016,33(11):1271-1284.
[16] Luo Y,Chen Y.Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China:An ensemble approach[J].Journal of Geophysical Research:Atmospheres,2015,120(20):10,593-10,618.
[17] Trenberth K E.On the Interpretation of the Diagnostic Quasi-Geostrophic Omega Equation[J].Monthly Weather Review,1978,106(1):131-137.
[18] Hoskins B J,Draghici I,Davies H C.A new look at the uation[J].Quarterly Journal of the Royal Meteorological Society,1978,104(439):31-38.
[19] 白乐生.准地转Q矢量分析及其在短期天气预报中的应用[J].气象,1988,14(8):25-30.
[20] 王劲松,叶燕华.甘肃省一次区域性暴雨的准地转Q矢量分析[J].干旱气象,1999(3):17-20.
[21] 张兴旺.湿Q矢量表达式及其应用[J].气象,1998(8):4-8.
[22] 岳彩军.梅雨锋气旋暴雨的Q矢量分析:个例研究[J].气象学报,2008(1):37-51.
[23] 岳彩军.“海棠”台风(2005)结构对其降水影响的Q矢量分解研究[J].高原气象,2009,28(6):1348-1364.
[24] 赵桂香,程麟生,李新生.Q矢量和湿Q矢量在暴雨诊断中的应用比较[J].气象,2006,32(6):25-30.
[25] 杨晓霞,沈桐立,刘还珠,等.非地转湿Q矢量分解在暴雨分析中的应用[J].高原气象,2006,25(3):464-475.
[26] Yang S,Wang D H.The Curl of Q Vector:A New Diagnostic Parameter Associated with Heavy Rainfall[J].Atmospheric and Oceanic Science Letters,2008,1(1):40-43.
[27] 刘运成.川北一次大暴雨过程的物理量诊断分析[J].成都信息工程学院学报,2008,23(6):678-681.
[28] 李晓容,张雪蓉,濮梅娟.梅汛期江淮切变线暴雨与非暴雨演变过程的合成对比分析研究[J].高原气象,2014,33(1):199-209.
[29] 岳彩军,顾问,唐玉琪,等.西太平洋副热带高压控制下上海地区一次局地短时强降水成因的Q矢量分析[J].热带气象学报,2018,34(5):610-625.
[30] 李山山,李国平.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象,2017,36(2):317-329.
[31] 刘毅,廖芷仪,张亚萍,等.重庆地区“5.30”暴雨过程的数值模拟及诊断分析[J].西南师范大学学报(自然科学版),2017(9):32-39.
[32] 高爽,肖天贵,吴莉娟.长江中下游一次暴雨过程的湿Q矢量诊断分析[J].气象与环境科学,2019,42(3):58-67.
[33] 韩芙蓉,鹿翔,梁亮.“莫兰蒂”台风暴雨的湿Q矢量和垂直螺旋度分析[J].海洋预报,2020,37(1):67-74.
[34] 张亚洲,梅华,邓文彬,等.台风登陆后非对称降水的非地转湿Q矢量研究[J].气象科学,2011,31(6):710-717.
[35] Rao Y V R,Hatwar H R,Salah A K,et al.An Experiment Using the High Resolution Eta and WRF Models to Forecast Heavy Precipitation over India[M].Atmospheric and Oceanic,2007.
[36] 高守亭,孙建华,崔晓鹏.暴雨中尺度系统数值模拟与动力诊断研究[J].大气科学,2008,32(4):854-866.
[37] 袁成松,王秋云,包云轩,等.基于WRF模式的暴雨天气过程的数值模拟及诊断分析[J].大气科学学报,2011,34(4):456-466.
[38] 廖胜石,寿绍文.一次江淮暴雨中中尺度低涡的数值模拟及分析[J].大气科学学报,2004,27(6):753-759.
[39] 翟国庆,王智,何斌.长江中下游梅雨期中小尺度涡旋族发生演变分析[J].测绘科技动态,2003,61(6):661-672.
[40] Kumar A,Dudhia J,Rotunno R,et al.Analysis of the 26 July 2005 heavy rain event over Mumbai,India using the Weather Research and Forecasting(WRF)model[J].Quarterly Journal of the Royal Meteorological Society,2008,134(636):1897-1910.
[41] Wang S Z,Yu E T,Wang H J.A simulation study of a heavy rainfall process over the Yangtze River valley using the two-way nesting approach[J].Advances in Atmospheric Sciences,2012,29(4),731-743.
[42] Yáez-Morroni Gonzalo,Gironás Jorge,Marta C,et al.Using the Weather Research and Forecasting(WRF)Model for Precipitation Forecasting in an Andean Region with Complex Topography[J].Atmosphere,2018,9(8):304.
[43] Maussion F,Scherer D,Finkelnburg R,et al.WRF simulation of a precipitation event over the Tibetan Plateau,China-an assessment using remote sensing and ground observations[J].Hydrology and Earth System Sciences,2011,15(6):1795-1817.
[44] Cassola F,Ferrari F,Mazzino A.Numerical simulations of Mediterranean heavy precipitation events with the WRF model:A verification exercise using different approaches[J].Atmospheric Research,2015,(164/165):210-225.
[45] Muhammed E,Mohammed M.Evaluation of different WRF microphysics schemes:severe rainfall over Egypt case study[C].Journal of Physics:Conf.Series,2018.
[46] Matilde Nicolini,Celeste Saulo,Juan Carlos Torres,et al.Enhanced precipitation over Southeastern South America related to strong low-level jet events during austral warm season[J].Meteorológica,2002(27):59-69.
[47] 高守亭.大气中尺度运动的动力学基础及预报方法[M].北京:气象出版社,2007:192-196.
[48] 岳彩军,李佳,陈佩燕,等.湿Q矢量释用技术的改进研究[J]. 高原气象,2013,32(6):1617-1625.
[49] 刘运成.青藏高原东侧一次连续大暴雨过程湿Q矢量分析[J].气象,2006,32(12):43-49.
[50] 汪克付,叶金印.江淮梅雨锋暴雨过程Q矢量分析及落区预报[J].气象,1995,21(3):40-43.
[51] 杨小艳,曹希孝.准地转Q矢量诊断场与暴雨关系的分析[J].气象,1995,21(11):17-21.
[52] 高留喜,刘畅,杨晓霞,等.鲁西北持续性暴雨非地转湿Q矢量分析[J].海洋气象学报,2018,38(3):75-82.
相似文献/References:
[1]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(06):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[2]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(06):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[3]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(06):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[4]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(06):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[5]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(06):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[6]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(06):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[7]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(06):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[8]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(06):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[9]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(06):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
[10]雷坤江,假 拉,肖天贵.利用FY2E 卫星降水资料对西藏地区
降水日变化特征分析[J].成都信息工程大学学报,2016,(01):86.
LEI Kun-jiang,JIA La,XIAO Tian-gui.The Characteristics of Diurnal Variations of Precipitation
Analysis in Tibet Accord to FY2E Precipitation[J].Journal of Chengdu University of Information Technology,2016,(06):86.
[11]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(06):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[12]彭 敏,巩远发,纪 策,等.新疆昌吉州一次极端暴雨天气过程分析及数值模拟[J].成都信息工程大学学报,2017,(05):537.[doi:10.16836/j.cnki.jcuit.2017.05.012]
PENG Min,GONG Yuan-fa,JI Ce,et al.Xinjiang Changji once Extreme Storm Weather Process
Analysis and Numerical Simulation in June 9, 2016[J].Journal of Chengdu University of Information Technology,2017,(06):537.[doi:10.16836/j.cnki.jcuit.2017.05.012]
[13]周艳艳,王 超,肖天贵,等.盆地城市下垫面相对湿度变化特征及数值模拟研究——以成都为例[J].成都信息工程大学学报,2020,35(01):111.[doi:10.16836/j.cnki.jcuit.2020.01.015]
ZHOU Yanyan,WANG Chao,XIAO Tiangui,et al.Characteristics and Numerical Simulation of Relative Humidity in Underlying Surface of Basin Cities-Taking Chengdu as an Example[J].Journal of Chengdu University of Information Technology,2020,35(06):111.[doi:10.16836/j.cnki.jcuit.2020.01.015]
[14]孙世杰,张小玲,樊 晋.高温背景下城市下垫面扩张对于成都市热岛效应的数值试验[J].成都信息工程大学学报,2023,38(03):358.[doi:10.16836/j.cnki.jcuit.2023.03.016]
SUN Shijie,ZHANG Xiaoling,FAN Jin.Numerical Simulation of the Effect of Urbanization on Heat Island Effect underExtreme-High-Temperature Background in Chengdu[J].Journal of Chengdu University of Information Technology,2023,38(06):358.[doi:10.16836/j.cnki.jcuit.2023.03.016]
备注/Memo
收稿日期:2020-01-27 基金项目:国家自然科学基金面上资助项目(41275033); 四川省科技厅软科学研究计划资助项目(2017ZR0043)