PDF下载 分享
[1]张 姝,陶宏才.基于改进DeepFM的车险索赔预测模型的研究[J].成都信息工程大学学报,2021,36(03):311-315.[doi:10.16836/j.cnki.jcuit.2021.03.012]
 ZHANG Shu,TAO Hongcai.Research on Prediction Model of Auto Insurance Claim based on Improved DeepFM[J].Journal of Chengdu University of Information Technology,2021,36(03):311-315.[doi:10.16836/j.cnki.jcuit.2021.03.012]
点击复制

基于改进DeepFM的车险索赔预测模型的研究

参考文献/References:

[1] 曾宇哲,吴嫒博,郑宏远.基于机器学习的车险索赔频率预测[J].统计与信息论坛,2019,34(5):69-78.
[2] 吴育文.广义线性模型在车险精算定价中的实证研究[J].内燃机与配件,2018,267(15):190-193.
[3] 孟生旺,李天博.基于机器学习算法的车险索赔概率与累积赔款预测[J].保险研究,2017(10):42-53.
[4] 张连增.回归树方法在车险索赔频率预测建模中的应用[J].保险研究,2018(1):101-111.
[5] 薛智雯.基于ARIMA-SVM的车险索赔次数预测[D].成都:西南财经大学,2018.
[6] 孟生旺.神经网络模型与车险索赔频率预测[J].统计研究,2012(3):22-26.
[7] 张连增.提升算法对传统车险索赔频率建模模型的改进——基于我国五省交强险保单数据[J].保险研究,2019(7):67-78.
[8] Lee S,Antonio K.Why High Dimensional Modeling in Actuarial Science[C].Proceedings of the IACA Colloquia,2015:75-79.
[9] Xiao J,Ye H,He X,et al.Attentional factorization machines:Learning the weight of feature interactions via attention networks[C].Proceedings of the 26th International Join Conference on Artificial Intelligence,2017:3119-3125.
[10] Rendle S.Factorization machines[C].Proceedings of the 2010 IEEE International Conference on Data Mining,2010:995-1000.
[11] Rendle S.Factorization Machines with libFM[J].ACM Transactions on Intelligent Systems and Technology,2012,3(3):1-22.
[12] 孙志军,薛磊,许阳明.深度学习研究综述[J].计算机应用研究,2012,29(8):6-10.
[13] Cheng H T,Kocl,Harmsen J,et al.Wide & deep learning for recommender systems[C].Proceedings of the 1st workshop on deep learning for recommender systems,2016:7-10.
[14] Guo H,Tang R,Ye Y,et al.DeepFM:A Factorization-Machine based Neural Network for CTR Prediction[C].Twenty-Sixth International Joint Conference on Artificial Intelligence,2017:1-8.
[15] Roy G,Navab N,Wachinger C.Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks[C].International conference on medical image computing and computer-assisted intervention,2018:421-429.
[16] 黄秋彧.个人信用风险评分的指标选择研究[J].新疆财经大学学报,2015(3):5-15.

备注/Memo

收稿日期:2020-03-28
基金项目:国家自然科学基金资助项目(61806170)

更新日期/Last Update: 2021-06-30