PDF下载 分享
[1]唐康健,文 展,李文藻.基于卷积神经网络的垃圾图像分类模型研究应用[J].成都信息工程大学学报,2021,36(04):374-379.[doi:10.16836/j.cnki.jcuit.2021.04.004]
 TANG Kangjian,WEN Zhan,LI Wenzao.Research and Application of Garbage Image Classification Model based on Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2021,36(04):374-379.[doi:10.16836/j.cnki.jcuit.2021.04.004]
点击复制

基于卷积神经网络的垃圾图像分类模型研究应用

参考文献/References:

[1] 张怀予.基于物联网和图像识别的垃圾分类回收系统[C].物联网与无线通信-2018年全国物联网技术与应用大会,2018(11):111-113.
[2] 叶志祥.智能分类垃圾桶设计研究[J].中国资源综合利用,2019,37(4):191-193.
[3] 黄兴华,叶军一,熊杰.基于纹理特征融合的道路垃圾图像识别及提取[J].计算机工程与设计,2019,40(11):3212-3218.
[4] 秦斌斌,何级,基于卷积神经网络的垃圾分类研究[J].无线通信技术,2019(3):51-56.
[5] 张斌,王强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,34(1):39-43.
[6] 王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(3):253-258.
[7] Krizhevsky A,Sutskever Ⅱ,Hinton G.Imagenet classification with deep convolutional neural networks[C].Proceeding of the Advances in Neural Information Processing Systems.LakeTanhoe,USA,2012:1097-1105.
[8] K Simonyan,A Zisserman.Very deep convolutional networks for large-scale image recognition[C].arXiv preprintarXiv,2014,1409-1556.
[9] Szegedy C,Liu W,Jia Y Q,et al.Going deeper with convolutions.In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].Boston,Massachusetts,USA:IEEE,2015.
[10] S Ioffe,C.Szegedy.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C].In Proceedings of The 32nd International Conference on Ma-chine Learning,2015:448-456.
[11] Szegedy C,Vanhoucke V,Ioffe S,et al.Rethinking the inception architecture for computer vision[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826.
[12] Christian Szegedy,Sergey loffe,Vincent Vanhoucke,et al.Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning[J].arXiv:1602.07261,2016.
[13] K He,X Zhang,S et al.Deep residual learning for image recognition[J].arXiv preprint arXiv:1512.03385,2015.
[14] 金钊.基于TensorFlow的不同深层卷积神经网络的对比与分析[J].电子世界,2018(6):25-26.
[15] 王文成,蒋慧,乔倩,等.基于ResNet50网络的十种鱼类图像分类识别研究[J].农村经济与科技,2019,30(19):60-62.

相似文献/References:

[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(04):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(04):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(04):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]黄 洁,王 燚.适用于侧信道分析的卷积神经网络结构的实验研究[J].成都信息工程大学学报,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
 HUANG Jie,WANG Yi.Experimental Study on the Structure of Convolutional Neural Network Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019,(04):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
[5]王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(03):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
 WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(04):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
[6]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(04):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[7]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(04):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
[8]蒲建飞,魏 维,吴帝勇,等.基于烟雾区域和轻量化模型的视频烟雾检测[J].成都信息工程大学学报,2023,38(03):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
 PU Jianfei,WEI Wei,WU Diyong,et al.Video Smoke Detection based on Smoke Area and Lightweight Model[J].Journal of Chengdu University of Information Technology,2023,38(04):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
[9]詹鸿辉,程仲汉.基于卷积神经网络的异常流量鉴别方法[J].成都信息工程大学学报,2023,38(06):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]
 ZHAN Honghui,CHENG Zhonghan.Identification Method of Abnormal Traffic based on Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2023,38(04):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]

备注/Memo

收稿日期:2020-10-18

更新日期/Last Update: 2021-09-20