TANG Kangjian,WEN Zhan,LI Wenzao.Research and Application of Garbage Image Classification Model based on Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2021,36(04):374-379.[doi:10.16836/j.cnki.jcuit.2021.04.004]
基于卷积神经网络的垃圾图像分类模型研究应用
- Title:
- Research and Application of Garbage Image Classification Model based on Convolutional Neural Network
- 文章编号:
- 2096-1618(2021)04-0374-06
- Keywords:
- garbage classification; convolutional neural network; accuracy; the cross entropy; Inception-V3; ResNet50
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 传统的垃圾分类方法往往借助于传感器完成垃圾识别分类,存在分类的准确率不高、模型复杂、缺乏高效操作性等问题。为解决这一问题,提出结合卷积神经网络的垃圾分类方法。使用具有高效特征提取性能的Inception-V3和ResNet50两种卷积神经网络对华为公开垃圾数据集Garbage Date进行训练,建立垃圾分类模型。实验表明,在训练集上的Inception-V3和ResNet50训练的准确率分别为89.9%和95.1%,交叉熵损失函数分别为1.463和1.363。使用可视化界面验证测试集中随机6类单张图片,ResNet50的准确率均高于Inception-V3。但ResNet50却不及Inception-V3稳定,Inception-V3准确率曲线更平滑。Inception-V3的收敛速度也比ResNet50快,消耗资源更少。
- Abstract:
- Traditional garbage classification methods often rely on sensors to complete garbage identification and classification,but there are problems such as low classification accuracy,complex models,and lack of efficient operability. In order to solve this problem,a garbage classification method combined with Convolutional Neural Networks(CNN)is proposed. Two convolutional neural networks,Inception-V3 and ResNet50,with high-efficiency feature extraction performance,were used to train Huawei’s public garbage data set Garbage Date,and a garbage classification model was established. Experiments show that the accuracy rates of Inception-V3 and ResNet50 training on the training set are 89.9% and 95.1%,respectively,and the cross entropy loss functions are 1.463 and 1.363,respectively. Using the visual interface to verify the six random single images in the test set,the accuracy of ResNet50 is higher than that of Inception-V3. But ResNet50 is not as stable as Inception-V3,and the accuracy curve of Inception-V3 is smoother.Inception-V3 converges faster than ResNet50 and consumes less resources.
参考文献/References:
[1] 张怀予.基于物联网和图像识别的垃圾分类回收系统[C].物联网与无线通信-2018年全国物联网技术与应用大会,2018(11):111-113.
[2] 叶志祥.智能分类垃圾桶设计研究[J].中国资源综合利用,2019,37(4):191-193.
[3] 黄兴华,叶军一,熊杰.基于纹理特征融合的道路垃圾图像识别及提取[J].计算机工程与设计,2019,40(11):3212-3218.
[4] 秦斌斌,何级,基于卷积神经网络的垃圾分类研究[J].无线通信技术,2019(3):51-56.
[5] 张斌,王强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,34(1):39-43.
[6] 王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(3):253-258.
[7] Krizhevsky A,Sutskever Ⅱ,Hinton G.Imagenet classification with deep convolutional neural networks[C].Proceeding of the Advances in Neural Information Processing Systems.LakeTanhoe,USA,2012:1097-1105.
[8] K Simonyan,A Zisserman.Very deep convolutional networks for large-scale image recognition[C].arXiv preprintarXiv,2014,1409-1556.
[9] Szegedy C,Liu W,Jia Y Q,et al.Going deeper with convolutions.In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].Boston,Massachusetts,USA:IEEE,2015.
[10] S Ioffe,C.Szegedy.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C].In Proceedings of The 32nd International Conference on Ma-chine Learning,2015:448-456.
[11] Szegedy C,Vanhoucke V,Ioffe S,et al.Rethinking the inception architecture for computer vision[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826.
[12] Christian Szegedy,Sergey loffe,Vincent Vanhoucke,et al.Inception-v4,Inception-ResNet and the Impact of Residual Connections on Learning[J].arXiv:1602.07261,2016.
[13] K He,X Zhang,S et al.Deep residual learning for image recognition[J].arXiv preprint arXiv:1512.03385,2015.
[14] 金钊.基于TensorFlow的不同深层卷积神经网络的对比与分析[J].电子世界,2018(6):25-26.
[15] 王文成,蒋慧,乔倩,等.基于ResNet50网络的十种鱼类图像分类识别研究[J].农村经济与科技,2019,30(19):60-62.
相似文献/References:
[1]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(04):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[2]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的
自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on
Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(04):525.[doi:10.16836/j.cnki.jcuit.2018.05.007
]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(04):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]黄 洁,王 燚.适用于侧信道分析的卷积神经网络结构的实验研究[J].成都信息工程大学学报,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
HUANG Jie,WANG Yi.Experimental Study on the Structure of Convolutional Neural Network Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019,(04):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
[5]王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(03):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(04):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
[6]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(04):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
[7]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(04):610.[doi:10.16836/j.cnki.jcuit.2021.06.005]
[8]蒲建飞,魏 维,吴帝勇,等.基于烟雾区域和轻量化模型的视频烟雾检测[J].成都信息工程大学学报,2023,38(03):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
PU Jianfei,WEI Wei,WU Diyong,et al.Video Smoke Detection based on Smoke Area and Lightweight Model[J].Journal of Chengdu University of Information Technology,2023,38(04):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
[9]詹鸿辉,程仲汉.基于卷积神经网络的异常流量鉴别方法[J].成都信息工程大学学报,2023,38(06):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]
ZHAN Honghui,CHENG Zhonghan.Identification Method of Abnormal Traffic based on Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2023,38(04):668.[doi:10.16836/j.cnki.jcuit.2023.06.008]
备注/Memo
收稿日期:2020-10-18