ZHU Jiahui,WANG Haijiang,XU Zili,et al.Research on Wind Field Retrieval based on ADS-B and the Influence of Outliers[J].Journal of Chengdu University of Information Technology,2021,36(05):493-498.[doi:10.16836/j.cnki.jcuit.2021.05.003]
基于ADS-B的风场反演与异常值影响研究
- Title:
- Research on Wind Field Retrieval based on ADS-B and the Influence of Outliers
- 文章编号:
- 2096-1618(2021)05-0493-06
- 关键词:
- 空域风场; 中尺度气象; ADS-B; Meteo-Particle; ECMWF
- Keywords:
- aerial wind field; mesoscale meteorology; ADS-B; Meteo-Particle; ECMWF
- 分类号:
- TN955
- 文献标志码:
- A
- 摘要:
- 目前空域风场的探测主要靠探空气球、无线电探空仪和测风仪等,但这些方法获得的风场数据覆盖比较稀疏,数据精度不能满足中尺度气象学和航空气象学的研究需要。针对高空区域风场存在准确性低、监测范围小、空间分辨率低等不足,结合ADS-B数据进行风场反演,利用Meteo-Particle粒子模型对风矢量进行估计,得到飞机航线以外的风场分布,并对异常值的影响进行相关分析。研究结果表明,将航空器数据用于气象信息反演具有重大意义,该模型用于风场反演有较高的准确度,可靠性高。与目前天气预报数值模型ECMWF相比,反演风场具有更高的精度,能够反映出以前不具备的有用细节。在风场反演中,异常值的存在严重影响了结果的准确率,进行异常值的筛选能显著提升风向结果的准确性。风向的整体变化趋势有很大改善,特别是在低空层,风向均方根误差变化平稳,波动较小,基本稳定在区域[6,10]。
- Abstract:
- At present,the main detection methods of aerial wind field still rely on sounding balloons,radiosondes and anemometers. The coverage of wind field data obtained by these methods is relatively sparse,and the accuracy of the data can not meet the research needs of mesoscale meteorology and aeronautical meteorology.In view of the low accuracy,small monitoring range and low spatial resolution of the wind field in the high altitude area,the wind field is retrieved with ADS-B data.The Meteo-Particle model is used to estimate the wind vector to obtain the wind field distribution outside the aircraft route,and the influence of outliers is analyzed. The results show that:it is of great significance to apply aircraft data to meteorological information retrieval,and the model has high accuracy and reliability in wind field retrieval.Compared with the current weather forecast numerical model ECMWF,the retrieval wind field has higher accuracy and can reflect the useful details which are not available before.In the wind field inversion,the existence of outliers seriously affects the accuracy of the results,and the screening of outliers can significantly improve the accuracy of wind direction results.The overall change trend of the wind direction has been greatly improved,especially in the low altitude,the root mean square error of the wind direction changes steadily and fluctuates little,and is basically stable in the region [6,10].
参考文献/References:
[1] 魏全珅.浅谈ADS-B在空中交通管制中的应用实践[J].通讯世界,2020,27(6):117-118.
[2] De Jong PM,Laan JV,Veld AI,et al.Wind-profile estimation using airborne sensors[J].Journal of Aircraft,2014,51(6):1852-63.
[3] 唐勇,何东林,朱新平.广播式自动相关监视与二次雷达的数据融合及应用[J].成都大学学报(自然科学版),2018,37(2):159-162.
[4] 马兰,高永胜.基于ADS-B数据挖掘的4D航迹预测方法[J].中国民航大学学报,2019,37(4):1-4.
[5] 周波,曹博,唐鹏,等.基于ADS-B的新型跟踪监视算法[J].电光与控制,2014,21(7):41-45.
[6] 李洪伟,章学锋,易东,等.ADS-B被动监视防撞告警系统设计[J].中国民航大学学报,2019,37(6):6-11.
[7] Schäfer M,Strohmeicr M,Smith M,et al.OpenSky report 2018:assessing the integrity of crowdsourced mode S and ADS-B data.In2018 IEEE/AIAA 37th Digital Avionics Systems Conference(DASC)[C].IEEE,2018:1-9.
[8] Sun J,V(^overu)H,Ellerbroek J,et al.Ground-based wind field construction from mode-s and ads-b data with a novel gas particle model[J].InProceedings of the Seventh SESAR Innovation Days,2017,28:30.
[9] Hrastovec M,Solina F.Obtaining meteorological data from aircraft with Mode-S radars[J].IEEE Aerospace and Electronic Systems Magazine,2013,28(12):12-24.
[10] Sun J, V(^overu)H, Ellerbroek J,et al.pymodes: Decoding mode-s surveillance data for open air transportation research[J].IEEE Transactions on Intelligent Transportation Systems,2019,21(7):2777-2786.
[11] 张鹏,何光亮.1090ES关键信息解码算法优化及实现[J].现代电子技术,2018,41(3):30-35.
[12] 王菲. 基于1090MHz ES数据链ADS-B关键技术研究[D].成都:电子科技大学,2009.
[13] 刘涛,廖伟,卿烈华,等.基于ADS-B数据的风矢量反演方法[J].成都信息工程大学学报,2020,35(4):412-418.
[14] Sun J, V(^overu)H, Ellerbroek J,et al.Weather field reconstruction using aircraft surveillance data and a novel meteo-particle model[J].PloS one. 2018,13(10).
[15] de Haan S. An improved correction method for high quality wind and temperature observations derived from Mode-S EHS[M]. KNMI,2013.
[16] De Leege A M P, Van Paassen M M, Mulder M. Using automatic dependent surveillance-broadcast for meteorological monitoring[J]. Journal of Aircraft, 2013, 50(1): 249-261.
[17] de Haan S. High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar[J].Journal of Geophysical Research: Atmospheres,2011,116(D10).
[18] Strajnar B. Validation of Mode-S meteorological routine air report aircraft observations[J].Journal of Geophysical Research: Atmospheres,2012,117(D23).
相似文献/References:
[1]吕伟绮,谌 芸,李晟祺,等.黄淮地区一次暖区大暴雨的中尺度特征分析[J].成都信息工程大学学报,2017,(04):391.[doi:10.16836/j.cnki.jcuit.2017.04.009]
LV Wei-qi,CHEN Yun,LI Cheng-qi,et al.Mesoscale Analysis on a Warm Sector Torrential Rain Event in Huang-Huai Area[J].Journal of Chengdu University of Information Technology,2017,(05):391.[doi:10.16836/j.cnki.jcuit.2017.04.009]
[2]蔺邹兴,华 维,范广洲,等.一次东移型西南低涡引发的强降水诊断分析[J].成都信息工程大学学报,2019,(04):384.[doi:10.16836/j.cnki.jcuit.2019.04.011]
LIN Zouxing,HUA Wei,FAN Guangzhou,et al.A Diagnostic Analysis of the Heavy Precipitation
Caused by Eastward Shift of Southwest Vortex[J].Journal of Chengdu University of Information Technology,2019,(05):384.[doi:10.16836/j.cnki.jcuit.2019.04.011]
[3]高志博,周筠珺,尹舒悦,等.成都地区一次超级单体风暴的观测分析与数值模拟[J].成都信息工程大学学报,2019,(04):392.[doi:10.16836/j.cnki.jcuit.2019.04.012]
GAO Zhibo,ZHOU Yunjun,YIN Shuyue,et al.A Mesoscale Numerical Simulation of a Supercell Storm in Chengdu Area[J].Journal of Chengdu University of Information Technology,2019,(05):392.[doi:10.16836/j.cnki.jcuit.2019.04.012]
备注/Memo
收稿日期:2021-08-27
基金项目:国家自然科学基金资助项目(U1733103)