WANG Rui,HU Rong.Levitin-Polyak Well-posedness for Split Equilibrium Problem[J].Journal of Chengdu University of Information Technology,2021,36(05):570-575.[doi:10.16836/j.cnki.jcuit.2021.05.016]
分裂平衡问题的Levitin-Polyak适定性
- Title:
- Levitin-Polyak Well-posedness for Split Equilibrium Problem
- 文章编号:
- 2096-1618(2021)05-0570-06
- 关键词:
- 分裂平衡问题; Levitin-Polyak适定性; 近似解集; 距离刻画; 解的存在唯一性
- Keywords:
- split equilibrium problem; Levitin-Polyak well-posedness; approximating solution set; metric characterization; existence and uniqueness of solution
- 分类号:
- O176.3
- 文献标志码:
- A
- 摘要:
- 在Banach空间中研究分裂平衡问题在Lucchetti与Patrone意义下的Levitin-Polyak适定性。首先分别给出分裂平衡问题在Lucchetti与Patrone意义下的适定性和Levitin-Polyak型适定性的概念; 然后借助分裂平衡问题近似解集的渐进行为及近似解集与解集的关系,建立分裂平衡问题在Lucchetti与Patrone意义下的Levitin-Polyak型适定性的Furi-Vignoli型等的距离刻画; 最后,在适当的条件下证明分裂平衡问题在Lucchetti与Patrone意义下的适定性与解的存在唯一性等价。
- Abstract:
- In this paper, we study the Levitin-Polyak well-posedness(in the sense of Lucchetti and patrone)of the split equilibrium problem in Banach space. Firstly, the concepts of the well-posedness of split equilibrium problems in the sense of Lucchetti and patrone and the well-posedness of Levitin-Polyak type are given respectively. Then, with the help of the asymptotic behavior of the approximate solution set of the split equilibrium problem and the relationship between the approximate solution set and the solution set, the distance characterization of the split equilibrium problem is established in the sense of Levitin-Polyak type well-posed Furi-Vignoli type in the sense of Lucchetti and patrone. Finally, we prove that under suitable conditions, the well-posedness of the split equilibrium problem is equivalent to the existence and uniqueness of its solution.
参考文献/References:
[1] Tykhonov A N.On the stability of the functional optimization problem[J].USSR J.Comput.Math.Math.Phys,1966,6:631-634.
[2] Levitin E S,Polyak B T.Convergence of minimizing sequences in conditional extremum problems[J].Sov.Math.Dokl,1966,7:764-767.
[3] Furi M,Vignoli A.About well-posed optimization problems for functionals in metric spaces[J].J.Optim.Theory Appl,1970,5(3):225-229.
[4] Zolezzi T.Well-posedness criteria in optimization with application to the calculus of variations[J].Nonlinear Anal.TMA,1995,25:437-453.
[5] Zolezzi T.Extended well-posedness of optimization problems[J].J.Optim.Theory Appl,1996,91:257-266.
[6] Konsulova A S,Revalski J P.Constrained convex optimization problems well-posedness and stability[J].Numer.Funct.Anal.Optim,1994,15:889-907.
[7] Huang XX,Yang X Q.Generalized Levitin-polyak well-posedness in constrained optimization[J]. SIAM J.Optim,2006,17(1):243-258.
[8] Dontchev A L,Zolezzi T.Well-Posed Optimization Problems[M].Berlin:Springer-verlag,1993.
[9] Zolezzi T.Well-posedness and optimization under perturbations[J].Ann.Oper.Res,2001,101:351-361.
[10] Lucchetti R.Convexity and Well-Posed Problems[M].New York:Springer,2006.
[11] Hu R,Fang Y P,Huang N J.Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints[J].J.Ind.Manag.Optim,2010,6(3):465-481.
[12] Lucchetti R,Patrone F.A characterization of Tyhonov well-posedness for minimum problems,with applications to variational inequalities[J].Numer.Funct.Anal.Optim,1981,3(4):461-476.
[13] Lucchetti R,Patrone F.Some properties of “well-posed” variational inequalities governed by linear operators[J].Numer.Funct.Anal.Optim,1982/83,5(3):349-361.
[14] Lignola M B,Morgan J.Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution[J].J.Glob.Optim.2000,16(1):57-67.
[15] Cavazzuti E,Morgan J.Well-posed saddle point problems.In:J.B.,Hirriart Urruty,W.Oettli,J.Stoer,(eds.)Optimization,Theory and Algorithms[M].New York:Marcel Dekker,1983:61-76.
[16] Margiocco M,Patrone F,Pusillo L.A new approach to Tikhonov well posedness for Nash equilibria[J].Optimization,1997,40(4):385-400.
[17] Lignola M B,Morgan J.α-well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints[J].J.Glob.Optim.2006,36(3):439-459.
[18] Fang Y P,Huang N J,Yao J C.Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems[J].J.Glob.Optim,2008,41:117-133.
[19] Huang XX,Yang X Q,Zhu D L.Levitin-Polyak well-posedness of variational inequality problems with functional constraints[J].J.Glob.Optim,2009,44:159-174.
[20] Hu R,Fang Y P.Levitin-Polyak well-posedness of variational inequalities[J].Nonlinear Anal.TMA,2010,72:373-381.
[21] Li X B,Xia F Q.Levitin-Polyak well-posedness of a generalized mixed variational inequality in Banach spaces[J].Nonlinear Anal.TMA,2012,75(4):2139-2153.
[22] Hu R,Fang Y P,Huang N J.Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints[J].Comput. Math.Appl,2008,55(1):89-100.
[23] Long X J,Huang N J,Teo K L.Levitin-Polyak well-posedness for equilibrium problems with functional constraints[J].J.Inequal,2008,2008:14.
[24] Bianchi M,Kassay G,Pini R.Well-posed equilibrium problems[J].Nonlinear Anal.TMA,2010,72(1):460-468.
[25] Xie T,Li X S.Well-posedness of second order differential mixed inverse quasivariational inequalities[J].Comm.Appl.Nonlinear Anal,2020,27:33-48.
[26] Censor Y,Gibali A,Reich S.Algorithms for the split variational inequality problem[J].Numer.Algorithms,2012,59:301-323.
[27] Hu R,Fang Y P.Characterizations of Levitin-Polyak well-posedness by perturbations for the split variational inequality problem[J].Optimization,2016,65(9):1717-1732.
[28] Hu R,Liu Y K,Fang Y P.Levitin-Polyak well-posedness by perturbations of split minimization problems[J].J.Fixed Point Theory Appl,2017,19:2209-2223.
[29] 高友.Banach空间中分离平衡问题的Levitin-Polyak-α适定性[J].四川师范大学学报(自然科学版),2014,37(4):455-459.
[30] Kuratowski K.Topology,Vols 1 and 2[M].New York:Academic Press,1968.
[31] Klein E,Thompson A C.Theory of Correspondences[M].New York:John Wiley & Sons,Inc,1984.
相似文献/References:
[1]王 瑞,胡 容.分裂平衡问题的扰动Levitin-Polyak适定性[J].成都信息工程大学学报,2023,38(02):244.[doi:10.16836/j.cnki.jcuit.2023.02.018]
WANG Rui,HU Rong.Levitin-Polyak Well-posedness by Perturbations of Split Equilibrium Problem[J].Journal of Chengdu University of Information Technology,2023,38(05):244.[doi:10.16836/j.cnki.jcuit.2023.02.018]
备注/Memo
收稿日期:2021-04-25
基金项目:四川省科技计划资助项目(2018JY01691)