PDF下载 分享
[1]曹远杰,高瑜翔,刘海波,等.基于YOLOv4-Tiny模型剪枝算法[J].成都信息工程大学学报,2021,36(06):610-614.[doi:10.16836/j.cnki.jcuit.2021.06.005]
 CAO Yuanjie,GAO Yuxiang,LIU Haibo,et al.Model Pruning Algorithm based on YOLOv4-Tiny[J].Journal of Chengdu University of Information Technology,2021,36(06):610-614.[doi:10.16836/j.cnki.jcuit.2021.06.005]
点击复制

基于YOLOv4-Tiny模型剪枝算法

参考文献/References:

[1] Szegedy C,Liu W,Jia Y,et al.Going deeper with convolutions[C].Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.
[2] K He,X Zhang,S Ren,et al.Deep Residual Learning for Image Recognition[C].2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[3] Huang G,Liu Z,Van Der Maaten L, et al. Densely Connected Convolutional Networks[C].2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2017: 2261-2269.
[4] Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3[C].2019 IEEE/CVF International Conference on Computer Vision(ICCV), 2019:1314-1324.
[5] Chollet F. Xception: Deep learning with depthwise separable convolutions[C].Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.
[6] Denil M,Shakibi B,Dinh L,et al.Predicting parameters in deep learning[C].Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2,2013:2148-2156.
[7] Molchanov P, Mallya A, Tyree S, et al. Importance estimation for neural network pruning[C].2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2019: 11256-11264.
[8] Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural networks[C].Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1,2015:1135-1143.
[9] 叶会娟,刘向阳.基于稀疏卷积核的卷积神经网络研究及其应用[J].信息技术,2017,10(10):5-9.
[10] 姚巍巍,张洁.基于模型剪枝和半精度加速改进YOLOv3-tiny算法的实时司机违章行为检测[J].计算机系统应用,2020,29(4):41-47.
[11] Redmon J,Divvala S,Girshick R,et al. You Only Look Once:Unified,Real-Time Object Detection [C].2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE,2016:779-788.
[12] Bochkovskiy A,Wang C Y,Liao H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection [J/OL]. arXiv,2020.
[13] Xu Z F,Jia R S,Liu Y B,et al.Fast method of detecting tomatoes in a complex scene for picking robots[J].IEEE Access,2020,8:55289-55299.
[14] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C].International conference on machine learning. PMLR, 2015: 448-456.
[15] 曹远杰,高瑜翔.基于GhostNet残差结构的轻量化饮料识别网络[J/OL].https://doi.org/10.19678/j.issn.1000-3428.0059966.计算机工程,2021-04-18.

相似文献/References:

[1]蔡姣姣,何 嘉.基于混合自动编码器的分类应用[J].成都信息工程大学学报,2016,(增刊1):1.
[2]任 波,王录涛,邓 旭,等.一种改进深度学习网络结构的英文字符识别[J].成都信息工程大学学报,2017,(03):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
 REN Bo,WANG Lu-tao,DENG Xu,et al.An Improved Deep Learning Network Structure for English Character Recognition[J].Journal of Chengdu University of Information Technology,2017,(06):259.[doi:10.16836/j.cnki.jcuit.2017.03.005]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(06):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]黄 洁,王 燚.适用于侧信道分析的卷积神经网络结构的实验研究[J].成都信息工程大学学报,2019,(05):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
 HUANG Jie,WANG Yi.Experimental Study on the Structure of Convolutional Neural Network Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019,(06):449.[doi:10.16836/j.cnki.jcuit.2019.05.001]
[5]冯金慧,陶宏才.基于注意力的深度协同在线学习资源推荐模型[J].成都信息工程大学学报,2020,35(02):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
 FENG Jinhui,TAO Hongcai.An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation[J].Journal of Chengdu University of Information Technology,2020,35(06):151.[doi:10.16836/j.cnki.jcuit.2020.02.005]
[6]王文文,陶宏才.基于优化VGG19卷积神经网络的异常检测模型研究[J].成都信息工程大学学报,2020,35(03):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
 WANG Wenwen,TAO Hongcai.Research on Anomaly Detection Model based on Optimized VGG19 Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2020,35(06):253.[doi:10.16836/j.cnki.jcuit.2020.03.001]
[7]杨 铭,文 斌.一种改进的YOLOv3-Tiny目标检测算法[J].成都信息工程大学学报,2020,35(05):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
 YANG Ming,WEN Bin.An Improved YOLOv3-Tiny Target Detection Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(06):531.[doi:10.16836/j.cnki.jcuit.2020.05.009]
[8]唐康健,文 展,李文藻.基于卷积神经网络的垃圾图像分类模型研究应用[J].成都信息工程大学学报,2021,36(04):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
 TANG Kangjian,WEN Zhan,LI Wenzao.Research and Application of Garbage Image Classification Model based on Convolutional Neural Network[J].Journal of Chengdu University of Information Technology,2021,36(06):374.[doi:10.16836/j.cnki.jcuit.2021.04.004]
[9]晏美娟,魏 敏,文 武.一种高分辨率卫星图像道路提取方法[J].成都信息工程大学学报,2022,37(01):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
 YAN Meijuan,WEI Min,WEN Wu.A Method of Road Extraction for High-Resolution Satellite Images[J].Journal of Chengdu University of Information Technology,2022,37(06):46.[doi:10.16836/j.cnki.jcuit.2022.01.008]
[10]蒲建飞,魏 维,吴帝勇,等.基于烟雾区域和轻量化模型的视频烟雾检测[J].成都信息工程大学学报,2023,38(03):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
 PU Jianfei,WEI Wei,WU Diyong,et al.Video Smoke Detection based on Smoke Area and Lightweight Model[J].Journal of Chengdu University of Information Technology,2023,38(06):281.[doi:10.16836/j.cnki.jcuit.2023.03.006]
[11]张 斌,王 强.一种改进型卷积神经网络的图像分类方法[J].成都信息工程大学学报,2019,(01):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
 ZHANG Bin,WANG Qiang.An Improved Convolution Neural Network Image Classification Method[J].Journal of Chengdu University of Information Technology,2019,(06):39.[doi:10.16836/j.cnki.jcuit.2019.01.009]
[12]唐明轩,李孝杰,周激流.基于Dense Connected深度卷积神经网络的 自动视网膜血管分割方法[J].成都信息工程大学学报,2018,(05):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
 TANG Ming-xuan,LI Xiao-jie,ZHOU Ji-liu.Automatic Retinal Vascular Segmentation Method based on Densely Connected Convolution Neural Network[J].Journal of Chengdu University of Information Technology,2018,(06):525.[doi:10.16836/j.cnki.jcuit.2018.05.007 ]
[13]曹远杰,高瑜翔,杜鑫昌,等.口罩佩戴识别中的Tiny-YOLOv3模型算法优化[J].成都信息工程大学学报,2021,36(02):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]
 CAOYuanjie,GAO Yuxiang,DU Xinchang,et al.Tiny-YOLOv3 Model Algorithm is Optimized for Mask Wearing Recognition[J].Journal of Chengdu University of Information Technology,2021,36(06):154.[doi:10.16836/j.cnki.jcuit.2021.02.005]

备注/Memo

收稿日期:2021-04-18
基金项目:四川省教育厅高校创新团队资助项目(15TD0022)

更新日期/Last Update: 2021-12-31