Li Ji,CHEN Yun,XIAO Tiangui,et al.Statistical Characteristics of Squall Line Under Cold Vortex Background in Northeast China[J].Journal of Chengdu University of Information Technology,2022,37(01):72-80.[doi:10.16836/j.cnki.jcuit.2022.01.013]
东北地区冷涡背景下飑线的统计特征
- Title:
- Statistical Characteristics of Squall Line Under Cold Vortex Background in Northeast China
- 文章编号:
- 2096-1618(2022)01-0072-09
- 分类号:
- P445
- 文献标志码:
- A
- 摘要:
- 为进一步研究东北地区冷涡背景下飑线的统计特征,识别出24个东北地区冷涡背景下的飑线过程,并利用动态合成分析等方法,对飑线过程的时空分布、移动特征、形成和消散方式及其与冷涡的关系进行统计研究。结果表明:(1)飑线过程南多北少,与平原-山区交界线的走向一致呈东北-西南向分布。飑线均位于冷涡的南侧,飑线不同时期差异不大。在冷涡发展增强和成熟阶段形成的飑线较多,而且在冷涡的减弱消亡阶段也有多条飑线产生。(2)飑线具有明显的日变化特征,多在午后至凌晨生成,上午最少。70.8%的飑线生命史为3~5 h。最大雷达回波强度在50~60 dBZ。(3)飑线多为从东到东南向直线型移动,中心平均移动速度为14.1 m/s。(4)飑线的形成方式以断续线型(BL)最多,消散方式以倒虚线型(RBL)最多。
- Abstract:
- In order to further study the statistical characteristics of squall line under the background of cold vortex in Northeast China, 24 squall line processes under the background of cold vortex in Northeast China were identified, and the temporal and spatial distribution, movement characteristics, formation and dissipation modes of squall line processes and their relationship with cold vortex were statistically studied by using dynamic synthesis analysis and other methods. The results show that:(1)Squall lines process is more in the South and less in the north, which is consistent with the trend of the boundary between plain and mountain area, and is distributed in Northeast southwest direction. Squall lines are located in the south of the cold vortex, and there is little difference in different periods of squall lines. There are more squall lines formed during the development and maturity stage of the cold vortex, and some of the squall lines are also generate during the weakening and disappearing stage of the cold vortex.(2)Squall lines have obvious diurnal variation characteristics, most of them are formed from afternoon to early morning, and least in the morning. The life history of 70.8% of squall lines is mainly 3 to 5 hours. The maximum radar echo intensity is in the range of 50-60 dBZ.(3)Squall lines mostly moves linearly from east to southeast, and the average moving speed of the center is 14.1 m/s.(4)Squall lines are formed by Broken line(BL)the most, and the dissipation method is Reversed broken line(RBL).
参考文献/References:
[1] 傅慎明,孙建华,张敬萍,等.一次引发强降水的东北冷涡的演变机理及能量特征研究[J].气象,2015,41(5):554-565.
[2] 何晗,谌芸,肖天贵,等.冷涡背景下短时强降水的统计分析[J].气象,2015,41(12):1466-1476.
[3] 公衍铎,郑永光,罗琪.冷涡底部一次弓状强飑线的演变和机理[J].气象,2019,45(4):483-495.
[4] 朱乾根,林锦瑞,寿绍文.天气学原理和方法[M].北京:气象出版社,1981.
[5] 寿绍文,励申申,姚秀萍.中尺度气象学[M].北京:气象出版社,2003.
[6] 郑媛媛,张雪晨,朱红芳,等.东北冷涡对江淮飑线生成的影响研究[J].高原气象,2014,33(1):261-269.
[7] 白人海,谢安.东北冷涡过程中的飑线分析[J].气象,1998,(4):38-41.
[8] 郭淳薇.飑线的研究进展[J].气象与减灾研究,2013,36(4):1-7.
[9] 丁一汇,李鸿洲,章名立,等.我国飑线发生条件的研究[J].大气科学,1982(1):18-27.
[10] 李姝霞,张宇星,张怡,等.豫东地区一次强飑线天气过程的综合分析[J].暴雨灾害,2011,30(1):57-63.
[11] 姬鸿丽,常红丽,陈红霞,等.一次飑线天气过程的综合分析[J].气象与环境科学,2009,32(2):41-45.
[12] 姚叶青,俞小鼎,张义军,等.一次典型飑线过程多普勒天气雷达资料分析[J].高原气象,2008(2):373-381.
[13] 杨珊珊,谌芸,李晟祺.冷涡背景下飑线过程统计分析[J].气象,2016,42(9):1079-1089.
[14] 段祥海.冷涡背景下京津冀地区飑线过程分析[D].成都:成都信息工程大学,2019.
[15] Bluestein H B,Jain M H.Formation of mesoscale lines of pirecipitation:Severe squall lines in Oklahoma during the spring[J].Journal of Atmospheric Sciences,1985,42(16):1711-1732.
[16] Meng Z,Yan D,Zhang Y.General features of squall lines in East China[J].Monthly Weather Review,2013,141(5):1629-1647.
[17] Parker M D,Johnson R H.Organizational modes of midlatitude mesoscale convective systems[J].Monthly weather review,2000,128(10):3413-3436.
[18] Jirak I L,Cotton W R,McAnelly R L.Satellite and radar survey of mesoscale convective system development[J].Monthly weather review,2003,131(10):2428-2449.
[19] 丁一汇,李鸿洲,章名立,等.我国飑线发生条件的研究[J].大气科学,1982(1):18-27.
[20] Zheng L,Sun J,Zhang X,et al.Organizational modes of mesoscale convective systems over central East China[J].Weather and Forecasting,2013,28(5):1081-1098.
[21] 俞小鼎,郑永光.中国当代强对流天气研究与业务进展[J].气象学报,2020,78(3):391-418.
[22] 李文娟,郦敏杰,李嘉鹏,等.浙江省春季至夏初飑线分型及对比分析[J].热带气象学报,2019,35(4):480-490.
[23] Rotunno R,Klemp J B,Weisman M L.A theory for strong,long-lived squall lines[J].Journal of the Atmospheric Sciences,1988,45(3):463-485.
[24] Weisman M L.The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems[J].Journal of the atmospheric sciences,1992,49(19):1826-1847.
[25] Weisman M L,Rotunno R.“A theory for strong long-lived squall lines” revisited [J].Journal of the Atmospheric Sciences,2004,61(4):361-382.
[26] 陈明轩,王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报,2012,70(3):371-386.
[27] 罗琪. 冷涡背景下飑线发展机理个例分析和模拟[D].北京:中国气象科学研究院,2019.
[28] 王林,沈新勇,王勇,等.华南一次飑线升尺度增长过程的机制分析[J].高原气象,2021,40(1):145-158.
[29] 杨吉,郑媛媛,夏文梅,等.东北冷涡影响下江淮地区一次飑线过程的模拟分析[J].气象,2020,46(3):357-366.
[30] 张乐楠,丁治英,王咏青,等.一次东北冷涡下槽后强风与飑线后向入流演变及成因分析[J].气象科学,2019,39(4):488-501.
[31] 罗琪,郑永光,陈敏.2017年北京北部一次罕见强弓状飑线过程演变和机理[J].气象学报,2019,77(3):371-386.
[32] 张哲,周玉淑,高守亭.一次辽东湾飑线过程的观测与数值模拟分析[J].大气科学,2018,42(5):1157-1174.
[33] 张仙.冷涡背景下京津冀地区连续降雹特征分析[D].南京:南京信息工程大学,2013.
[34] 窦慧敏,丁治英,郭春燕,等.2013—2017年夏季东北冷涡下东北地区MCS的统计特征[J].气象科学,2020,40(3):341-353.
[35] Gray W M.Recent advances in tropical cyclone research from rawinsonde composite analysis[M].WMO,1981.
[36] 孙力,王琪,唐晓玲.暴雨类冷涡与非暴雨类冷涡的合成对比分析[J].气象,1995(3):7-10.
[37] 沈新勇,张弛,高焕妍,等.三类高空冷涡的划分及其动态合成分析[J].暴雨灾害,2020,39(1):1-9.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(01):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(01):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(01):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[5]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(01):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[6]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(01):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[7]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(01):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[8]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(01):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[9]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(01):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[10]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(01):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
备注/Memo
收稿日期:2021-02-23
基金项目:国家自然科学基金资助项目(41975001); 国家重点研发计划专项资助项目(2017YFC1502501)