GU Xinrui,LUO Yali,XIAO Tiangui,et al.Observational Analysis of the Fine-scale Vertical Structure of Localized Heavy Precipitation Associated with Typhoon “Merbok”[J].Journal of Chengdu University of Information Technology,2022,37(03):290-301.[doi:10.16836/j.cnki.jcuit.2022.03.009]
台风“苗柏”影响下局地强降水精细化垂直结构特征观测分析
- Title:
- Observational Analysis of the Fine-scale Vertical Structure of Localized Heavy Precipitation Associated with Typhoon “Merbok”
- 文章编号:
- 2096-1618(2022)03-0290-12
- Keywords:
- atmospheric science; mesoscale meteorology; heavy precipitation; dual-polarization radar; the Pearl River Delta; warm rain process; ice phase process
- 分类号:
- P458.1+21
- 文献标志码:
- A
- 摘要:
- 为研究珠三角地区强降水的云微物理特征,利用广州双偏振雷达观测数据、地面自动站降水资料、广州低频电场探测阵列探测的闪电脉冲放电事件资料及ERA5再分析资料,分析2017年6月12-13日台风“苗柏”影响下珠三角地区三处(A、B、C)局地短时强降水的精细化垂直结构特征。结果表明:珠三角内陆A、B区域的强降水由一条快速移动的东北—西南中尺度带状强回波的北段和中段产生,海岸线上C区域的强降水由一个稳定维持的准静止团状对流体产生; 溶解层以下,3个区域的ZDR、KDP随着高度降低逐渐增大,表明其暖雨过程很活跃; 3个区域40 dBz回波伸展至9 km左右,4.5~7 km处霰粒子占所有类型水凝物的面积比例均大于40%,5~13 km高度均出现闪电,表明冰相和混合相云微物理过程对强降水也有重要贡献; 相比A和B,C区域溶解层以下ZH频次峰值的ZH值更大,近地面极端累积降水量更大,低层较大的雨滴和较高的含水量均更多,闪电脉冲放电事件频数峰值的高度也更高。这不仅由于C区域具有更丰富的水汽、更低的抬升凝结高度和自由对流高度,也与其对流体的团状形态和稳定少动有关。
- Abstract:
- In order to study the cloud microphysical characteristics of heavy precipitation in the Pearl River Delta region, the Guangzhou dual-polarization radar(dual-POL)observations, precipitation data from automatic weather stations(AWSs), lightning pulse discharge events data obtained by the Guangzhou Low-frequency E-field Detection Array(LFEDA), and ERA5 reanalysis data were used to analyze the fine-scale vertical structure of three localized short-term heavy rainfall regions(A,B,C)in the Pearl River Delta under the influence of Typhoon “Merbok” on June 12-13, 2017. Major findings are as follows. The heavy rainfall in the inland A and B, respectively, are produced by the northern and middle portions of a fast moving, northeast-southwest oriented mesoscale rainband, and in the coastal C by a quasi-stationary circular convective element. Below the melting layer(at approximately 5 km height), ZDR and KDP in the three regions gradually increase toward the ground, indicating active warm rain processes. Meanwhile, the strong reflectivities(> 40 dBZ)extend up to about 9 km, with graupel accounting for more than 40% of the hydrometeor area at4.5-7 km and lightning mostly at 5-13 km height in the three regions, indicating significant contribution of ice-and mixed-phase microphysical processes to the heavy rainfall production. Compared to A and B, precipitation in C has the modes of ZH below the melting layer at higher values, larger extreme rainfall accumulation, more occurrences of both large raindrops and high liquid water content. The lightning pulse discharge event frequency in C peaks at about 10-11 km, which is higher than those of A and B(8-9 km). Such differences are attributed to more abundant moisture, lower lifting condensation level and level of free convection in C, and also related to the circular shape and quasi-stationary feature of the convective element in C.
参考文献/References:
[1] 包澄澜.华南前汛期暴雨研究的进展[J].海洋学报(中文版),1986(1):31-40.
[2] 黄士松.华南前汛期暴雨[M].广州:广东科技出版社,1986.
[3] 陶诗言.中国之暴雨[M].北京:科学出版社,1980.
[4] Wu M,Luo Y,Chen F,et al.Observed Link of Extreme Hourly Precipitation Changes to Urbanization over Coastal South China[J].Journal of Applied Meteorology and Climatology,2019,58(8):1799-1819.
[5] Sohn B J,Ryu G H,Song H J,et al.Characteristic Features of Warm-Type Rain Producing Heavy Rainfall over the Korean Peninsula Inferred from TRMM Measurements[J].Monthly Weather Review,2013,141(11):3873-3888.
[6] Song H J,Sohn B J.Two Heavy Rainfall Types over the Korean Peninsula in the Humid East Asian Summer Environment:A Satellite Observation Study[J].Monthly Weather Review,2014,143(1):363-382.
[7] Hamada A,Takayabu Y N,Liu C,et al.Weak linkage between the heaviest rainfall and tallest storms[J].Nature Communications,2015,6:6213.
[8] Gingrey,Alexandria,Varble,et al.Relationships between Extreme Rain Rates and Convective Intensities from the Perspectives of TRMM and WSR-88D Radars[J].Journal of Applied Meteorology and Climatology,2018,57(6):1353-1369.
[9] 杨忠林,赵坤,徐坤,等.江淮梅雨期极端对流微物理特征的双偏振雷达观测研究[J].气象学报,2019,77(1):58-72.
[10] Luo Y L,Xia R D,Johnny C L.Characteristics,physical mechanisms,and prediction of pre-summer rainfall over South China:Research progress during 2008-2019[J].Journal of Meteor Soc of Japan,2020,98:19-42.
[11] Li M,Luo Y,Zhang D L,et al.Analysis of a Record-Breaking Rainfall Event Associated With a Monsoon Coastal Megacity of South China Using Multisource Data[J].IEEE Transactions on Geoscience and Remote Sensing,2020(99):1-11.
[12] Luo Y,Wang H,Zhang R,et al.Comparison of Rainfall Characteristics and Convective Properties of Monsoon Precipitation Systems over South China and the Yangtze and Huai River Basin[J].Journal of Climate,2013,26(1):110-132.
[13] 吴翀.双偏振雷达的资料质量分析,相态识別及组网应用[D].南京:南京信息工程大学,2018.
[14] Xia R,Zhang D,Wang B.A 6-yr Cloud-to-Ground Lightning Climatology andits Relationship to Rainfall over Central and Eastern China[J].Journal of Applied Meteorology and Climatology,2015,54(12):2443-2460.
[15] Zheng D,Zhang Y,Meng Q,et al.Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy[J].Advances in Atmospheric Sciences,2016,33(3):365-376.
[16] RyZhkov A,Diederich M,Zhang P,et al.Potential utilization of specific attenuation for rainfall estimation,mitigation of partial beam blockage,and radar networking[J].Journal of Atmospheric and Oceanic Technology,2014,31(3):599-619.
[17] Kumjian M R.Principles and Applications of Dual-Polarization Weather Radar.Part I:Description of the Polarimetric Radar Variables[J].Journal of Operational Meteorology,2013,1(19):226-242.
[18] Kumjian M R.Principles and Applications of Dual-Polarization Weather Radar.Part II:Warm- and Cold-Season Applications[J].Journal of Operational Meteorology,2013,1(20):243-264.
[19] Wu C,Liu L,Wei M,et al.Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China[J].Advances in Atmospheric Sciences,2018,35(3):296-316.
[20] Shi D D,D Zheng,Zhang Y,et al.Low-frequency E-field Detection Array(LFEDA)——Construction and preliminary results[J].Science China,2017,60(10):1896-1908.
[21] Luo Y,Wu M,Ren F,et al.Synoptic Situations of Extreme Hourly Precipitation over China[J].Journal of Climate,2016,29(24):8703-8719.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(03):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(03):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(03):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[5]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(03):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[6]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(03):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[7]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[8]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[9]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(03):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[10]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(03):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
[11]段祥海,谌 芸,朱克云.一次冷涡减弱阶段产生的飑线过程分析[J].成都信息工程大学学报,2019,(05):512.[doi:10.16836/j.cnki.jcuit.2019.05.013]
DUAN Xianghai,CHEN Yun,ZHU Keyun.Analysis of a Squall Line Occurred with a Subdued Cold Vortex[J].Journal of Chengdu University of Information Technology,2019,(03):512.[doi:10.16836/j.cnki.jcuit.2019.05.013]
[12]钱 宪,谌 芸,肖天贵.“8·12”随州极端暴雨的中尺度特征分析[J].成都信息工程大学学报,2023,38(04):450.[doi:10.16836/j.cnki.jcuit.2023.04.012]
QIAN Xian,CHEN Yun,XIAO Tiangui.Mesoscale Characteristics Analysis of the Extreme Rainstorm in Suizhou on August 12, 2021[J].Journal of Chengdu University of Information Technology,2023,38(03):450.[doi:10.16836/j.cnki.jcuit.2023.04.012]
备注/Memo
收稿日期:2021-03-05
基金项目:中国气象科学研究院基本科研业务费专项资助项目(2020Z010)