LUO Kaiyi,CHEN Quanliang.Temporal and Spatial Evolution Characteristics of Stratospheric Water Vapor over the Tibetan Plateau[J].Journal of Chengdu University of Information Technology,2022,37(04):422-428.[doi:10.16836/j.cnki.jcuit.2022.04.010]
青藏高原上空平流层水汽的时空演变特征
- Title:
- Temporal and Spatial Evolution Characteristics of Stratospheric Water Vapor over the Tibetan Plateau
- 文章编号:
- 2096-1618(2022)04-0422-07
- Keywords:
- atmospheric science; climate system and climate change; the Tibetan Plateau; stratospheric water vapor; temporal and spatial distribution
- 分类号:
- P467
- 文献标志码:
- A
- 摘要:
- 为研究青藏高原上空平流层水汽的时空演变特征,利用ERA-Interim再分析数据,通过气候统计学方法,对青藏高原上空平流层水汽时空演变特征及长期变化趋势进行研究。结果显示,青藏高原上空不同高度平流层水汽分布不同。在平流层低层,夏季和秋季水汽由南向北递减,而冬季水汽由南向北逐渐递增。在平流层中层,夏季水汽含量的分布呈现明显的东西差异。在平流层上层,水汽呈现一致的由南向北方向逐渐增加的分布情况。在垂直方向上随高度增加水汽先迅速地减小后再增加,春季和冬季“<”型结构明显。青藏高原上空水汽含量在不同时段的变化趋势表现不同,1979-1991年及1997-2007年呈递减的趋势,1992-1996年及2007年以后呈增加的趋势。近10年以来平流层低层水汽含量显著增加,增长趋势约为每年0.4~0.5 ppmv。
- Abstract:
- In order to study the characteristics of the temporal and spatial evolution of stratospheric water vapor over the Tibetan Plateau, the ERA-Interim reanalysis data is used and the method of climate statistics is used to discuss the characteristics of the temporal and spatial evolution of stratospheric water vapor over the Tibetan Plateau and the long-term change trend were studied. The results show that the stratospheric water vapor distribution over the Tibetan Plateau is different at different altitudes. In the lower stratosphere, the water vapor decreases from south to north in summer and autumn; while in winter, the water vapor gradually increases from south to north. In the middle stratosphere, the distribution of water vapor content in summer shows obvious differences between east and west. In the upper stratosphere, water vapor presents a uniform distribution that gradually increases from south to north. In the vertical direction, with the increase of height, the water vapor first decreases rapidly and then increases, and the “<” structure is obvious in spring and winter. The variation trend of water vapor content over the Tibetan Plateau is different in different periods, showing a decreasing trend in 1979-1991 and 1997-2007, and an increasing trend in 1992-1996 and after 2007. In recent ten years, the water vapor content in the lower stratosphere has increased significantly, and the growth trend is about 0.4~0.5 ppmv per year.
参考文献/References:
[1] Bengtsson L.The global atmospheric water cycle[J].Environmental Research Letters,2010,5(2):025202.
[2] Forster,Piers M D F.Assessing the climate impact of trends in stratospheric water vapor[J].Geophysical Research Letters,2002,29(6).
[3] 张健恺,刘玮,韩元元,等.平流层臭氧变化对对流层气候影响的研究进展[J].干旱气象,2014(5):685-693.
[4] Sinha A,Harries J E.Water vapour and greenhouse trapping:The role of far infrared absorption[J].Geophysical Research Letters,2013,22(16):2147-2150.
[5] Tian W,Chipperfield M P,Lü D.Impact of increasing stratospheric water vapor on ozone depletion and temperature change[J].Advances in Atmospheric Sciences,2009,26(3).
[6] 韩元元.平流层大气成分的时空变化特征及其影响因子[D].兰州:兰州大学,2018.
[7] 田红瑛,田文寿,雒佳丽,等.青藏高原地区上对流层—下平流层区域水汽分布和变化特征[J].高原气象,2014,33(1):1-13.
[8] 张岱乐.上对流层/下平流层水汽分布特征及夏季亚洲季风区水汽输送与脱水机制的探讨[D].南京:南京信息工程大学,2013.
[9] Tabazadeh A.Quantifying Denitrification and Its Effect on Ozone Recovery[J].Science,2000.
[10] Austin J,Shindell D,Beagley S R,et al.Uncertainties and assessments of chemistry-climate models of the stratosphere[J].Atmos.chem.phys,2002,3(1):1-27.
[11] Nedoluha G E,Bevilacqua R M,Gomez R M,et al.Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based Water Vapor Millimeter-Wave Spectrometer from 1991 to 1997[J].Journal of Geophysical Research Atmospheres,1998,103(D3):3531-3543.
[12] Rosenlof K H,Oltmans S J,Kley D,et al.Stratospheric water vapor increases over the past half-century[J].Geophys.res.letters,2001,28(7):1195-1198.
[13] Randel W J,Wu F,Oltmans S J,et al.Interannual Changes of Stratospheric Water Vapor and Correlations with Tropical Tropopause Temperatures[J].Journal of the Atmospheric Sciences,2004,61(17):2133-2148.
[14] Griggs D J,Noguer M.Climate change 2001:The scientific basis.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[J].Weather,2010,57(8):267-269.
[15] Dhomse S,Weber M,Burrows J.The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor[J].ATMOSPHERIC CHEMISTRY AND PHYSICS,2008,8(3):471-480.
[16] Hurst D F,Oltmans S J,Vmel H,et al.Stratospheric water vapor trends over Boulder,Colorado:Analysis of the 30 year Boulder record[J].Journal of Geophysical Research Atmospheres,2011:116.
[17] Gettelman A,Salby M L,Sassi F.Distribution and influence of convection in the tropical tropopause region[J].Journal of Geophysical Research Atmospheres,2002,107(D10).
[18] Fu R,Hu Y,Wright J S,et al.Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau[J].Proceedings of the National Academy of Sciences,2006,103(15):5664-5669.
[19] 卞建春,严仁嫦,陈洪滨.亚洲夏季风是低层污染物进入平流层的重要途径[J].大气科学,2011(5):109-114.
[20] 陈斌,徐祥德,卞建春,等.夏季亚洲季风区对流层向平流层输送的源区、路径及其时间尺度的模拟研究[J].大气科学,2010(3):29-39.
[21] Dong W,Lin Y,Wright J S,et al.Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent[J].Science Foundation in China,2016,7:19.
[22] Xu X,Lu C,Shi X,et al.World water tower:An atmospheric perspective[J].Geophysical Research Letters,2008,35(20):L20815.
[23] 冯冬蕾,朱津辉,曲骅倩,等.青藏高原UTLS区域水汽输送特征分析[J].农业灾害研究,2017,7(8):5-7.
[24] DONG H P.A study of influencing systems and moisture budget in a heavy rainfall in low latitude plateau in China during early summer[J].Advances in Atmospheric Sciences,2007(2).
[25] Kley D,Stone E J,Henderson W R,et al.In Situ Measurements of the Mixing Ratio of Water Vapor in the Stratosphere[J].J.atmos.sci,1979,36(12):2513.
[26] Mote P W,Rosenlof K H,Mcintyre M E,et al.An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor[J].Journal of Geophysical Research Atmospheres,1996,101(D2).
[27] 杨健,吕达仁.平流层—对流层交换研究进展[J].地球科学进展,2003(3):380-385.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(04):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(04):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(04):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(04):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[5]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[6]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[7]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(04):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[8]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(04):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[9]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(04):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[10]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(04):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
备注/Memo
收稿日期:2021-03-31
基金项目:国家重大自然灾害监测预警与防治发展规划重点专项基金资助项目(2018YFC1506006)