LIU Aiwei,ZHOU Yunjun,ZENG Yong,et al.Macroscopic and Microscopic Physical Characteristics of Isolated Storm Cell during Explosive Growth Process[J].Journal of Chengdu University of Information Technology,2022,37(05):574-583.[doi:10.16836/j.cnki.jcuit.2022.05.014]
孤立单体爆发性增长过程中的宏微观物理特征研究
- Title:
- Macroscopic and Microscopic Physical Characteristics of Isolated Storm Cell during Explosive Growth Process
- 文章编号:
- 2096-1618(2022)05-0574-10
- Keywords:
- atmospheric science; atmospheric physics and atmospheric environment; hailstorm; explosive growth process; micro physics; thermal dynamic; lightning activity; accumulation zone
- 分类号:
- P401
- 文献标志码:
- A
- 摘要:
- 为探究贵州威宁地区雹暴爆发性增长过程热动力、微物理和闪电活动特征,利用贵州威宁X波段双偏振雷达观测资料对2018-2019年23个降雹个例进行统计分析,对2018年4月25日一次具有“累积带”特征的孤立单体降雹过程的爆发性增长阶段热动力、微物理及雷电活动进行详细分析。结果表明:(1)通过统计,0 ℃层以上45 dBZ体积增长最大速率出现时间较降雹时间提前5~15 min,与最大上升气流(本文用径向速度垂直分量表征上升气流强度)提前量相关性最大,相关系数达到0.778。(2)在爆发性增长阶段上升气流对低密度霰(LDG)数量增长的贡献最大,上升气流强度与低密度霰最大增长速率相关系数达到0.62。(3)孤立单体雹暴爆发性增长阶段单体内上升气流强度大,正径向速度垂直分量最大值维持在2 m/s以上。(4)爆发性增长前期强上升气流将大量水汽输送至-10 ℃高度以上形成大量冰晶和低密度霰,同时0 ℃~-20 ℃高度范围内过冷水大量堆积形成“累积带”,过冷水粒子增长速率最高达到每分钟17.8距离库数。(5)爆发性增长后期雨夹雹大量生成,其主要贡献源为高密度霰在“累积带”区域过冷水条件下进行转化,高密度霰粒子库数占比减少1.94个百分点。(6)爆发性增长阶段雹云内冰晶和霰的数量急剧增多、动力场剧烈变化,非感应起电率增加,闪电频数显著增加。这些指标反映出贵州威宁孤立单体雹暴及其内部“累积带”在爆发性增长阶段的特征变化,为监测孤立单体雹暴爆发性增长以及冰雹预警提供一定参考依据。
- Abstract:
- In order to explore the characteristics of thermal dynamics, microphysics and lightning activity in the process of hailstorm explosive growth in Weining, Guizhou, the observation data of X-band dual-polarization radar in Weining, Guizhou were firstly used for statistical analysis of 23 hailstorm cases from 2018 to 2019. Then, the thermal dynamics, microphysics and lightning activity in the explosive growth stage of an isolated monomer hail process with the characteristic of “accumulation zone”on April 25,2018 were analyzed in detail. The results show that:(1)according to statistics,the occurrence time of the maximum volume growth rate of 45 dBZ above 0 ℃-layer is 5~15 min compared with that of hail falling time, and it has the greatest correlation with the advance amount of the maximum updraft(the vertical component of radial velocity was used to represent the strength of updraft in this paper), with the correlation coefficient reaching 0.778.(2)In the stage of explosive growth, updraft makes the largest contribution to the quantity growth of low-density graupel(LDG), and the correlation coefficient between updraft intensity and maximum growth rate of low-density graupel reaches 0.62.(3)In the stage of hailstorm explosive growth, the updraft intensity in the single cell is large, and the maximum value of the vertical component of the positive radial velocity remains above 2 m/s.(4)In the early stage of explosive growth, a large amount of water vapor is transported by strong updraft above the height of -10 ℃-layer to form a large number of ice crystals and low-density graupel. At the same time, a large amount of supercooled water accumulates in the height range of 0 ℃~ -20 ℃ to form a “accumulation zone”.The growth rate of supercooled water particles reaches the maximum of 17.8 pools per min.(5)In the later stage of explosive growth, rain and hail are generated in large quantities. Its main contribution source is conversion of high-density graupel under super-cold water conditions in the “accumulation zone” area, and the number of high-density graupel particle reservoir decreases by 1.94%.(6)In the stage of explosive growth, the number of ice crystals and graupel in hail cloud increases sharply, the dynamic field changes dramatically, the non-inductive electrification rate increases, and the lightning frequency increases significantly. Consequently, these indexes reflect the characteristic changes of isolated hail storm and its inner “accumulation zone” in the stage of explosive growth in Weining, Guizhou, and provide a certain reference for monitoring the explosive growth of isolated monomer hail storm and hail early warning.
参考文献/References:
[1] 王昂生,黄美元,徐乃璋,等.冰雹云物理发展过程的一些研究[J].气象学报,1980(1):64-72.
[2] 段鹤,严华生,马学文,等.滇南冰雹的预报预警方法研究[J].气象,2014,40(2):174-185.
[3] 孙传东,池再香,刘国强,等.六盘水市冰雹时空分布特征及预警指标研究[J].中低纬山地气象,2019,43(2):39-42.
[4] 李成鹏,金文杰.滇中一次人工防雹过程的雷达回波对比分析[J].云南地理环境研究,2019,31(1):61-65+79.
[5] 曾勇,李丽丽,李迪,等.贵州一次典型冰雹云单体回波多阶跃增特征分析[J].防灾科技学院学报,2019,21(3):56-65.
[6] Sulakvelidze G K,Bibilashvili N S,Lapcheva V F.Formation of precipitation and modification of hail processes[J].Isr.Program Sci.Transl,1967.
[7] 安林,张强,康凤琴,等.人工防雹消雹业务技术问题的讨论[J].干旱气象,2006(1):53-56.
[8] 黄美元,徐华英,周玲.中国人工防雹四十年[J].气候与环境研究,2000(3):318-328.
[9] 周玲,陈宝君,李子华,等.冰雹云中累积区与冰雹的形成的数值模拟研究[J].大气科学,2001(4):536-550.
[10] 胡朝霞,李宏宇,肖辉,等.旬邑冰雹云的数值模拟及累积带特征[J].气候与环境研究,2003(2):196-208.
[11] 郑凯琳,陈宝君.含水量累积区与冰雹增长行为之数值模拟[J].大气科学,2011,35(2):298-310.
[12] 郭欣,郭学良,陈宝君,等.一次大冰雹形成机制的数值模拟[J].应用气象学报,2019,30(6):651-664.
[13] 肖艳姣,王斌,陈晓辉,等.移动X波段双线偏振多普勒天气雷达差分相位数据质量控制[J].高原气象,2012,31(1):223-230.
[14] 赵川鸿,周筠珺,肖辉,等.X波段双线偏振多普勒雷达共极化差分相移资料的滤波方法研究[J].大气科学,2019,43(2):285-296.
[15] Park S G,Bringi V N,Chandrasekar V,et al. Correction of Radar Reflectivity and Differential Reflectivity for Rain Attenuation at X Band.Part I:Theoretical and Empirical Basis[J].J.atmos.oceanic Technol,2005,22(11):1621-1632.
[16] Park S G,Maki M,Iwanami K,et al.Correction of radar reflectivity and differential reflectivity for rain attenuation at X band.Part II:Evaluation and application[J].Journal of Atmospheric & Oceanic Technology,2005,22(11):1633-1655.
[17] 黄云仙,张英.多普勒天气雷达数据插值方法比较研究[J].遥感信息,2008(2):39-45.
[18] Locatelli J D,Hobbs P V.Fall speeds and masses of solid precipitation particles[J]. J.Geophys.Res.,1974,79(15):2185-2197.
[19] Ludlam F H,Mason B J.The physics of clouds [M].Bartels J.Geophysik II/Geophysics II. Berlin: Springer,479-540.
[20] Pruppacher H R,Klett J D.Microphysics of Clouds and Precipitation[M].2nd ed. Dordrecht: Kluwer Academic Publisher.1997.
[21] Pruppacher H R,Klett J D,Wang P K.Microphysics of clouds and precipitation[J].Aerosol Science and Technology,1998,28(4):381-382.
[22] Auer A H.Distribution of graupel and hail with size[J].Mon.Wea.Rev.,1972,100(5):325-328.
[23] Heymsfield A J.The characteristics of graupel particles in northeastern colorado cumulus congestus clouds[J].J.Atmos.Sci.,35(2):284-295.
[24] Heymsfield A J,Bansemer A,Schmitt C,et al.Effective ice particle densities derived from aircraft data[J].J.Atmos.Sci.,2004,61(9):982-1003.
[25] 郁青,王雨曾.满城冰雹云类型与特征分析[J].气象,1995(6):33-38.
[26] 郑冰.毕节雹云的分类[J].贵州气象,1999(4):33-35.
[27] 曾勇,邹书平,李丽丽,等.贵州中西部冰雹云中闪电特征观测研究[J].气象与环境学报,2019,35(5):123-129.
[28] Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms[J].J Atmos Soc,1978,35(24):1536-1548.
[29] Saunders C.Charge Separation Mechanisms in Clouds[J].Space ence Reviews,2008,137(1-4):335-353.
相似文献/References:
[1]梁家豪,陈科艺,李 毓.WRF模式中积云对流参数化方案对南海土台风“Ryan”模拟的影响研究[J].成都信息工程大学学报,2019,(02):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
LIANG Jiahao,CHEN Keyi,LI Yu.The Impact of Different Cumulus Parameterization Schemes of the WRF
Model on the Typhoon “Ryan” Simulation over the South China Sea[J].Journal of Chengdu University of Information Technology,2019,(05):162.[doi:10.16836/j.cnki.jcuit.2019.02.010]
[2]廖 琦,肖天贵,金荣花.东亚副热带西风急流年际变化特征分析[J].成都信息工程大学学报,2018,(01):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
LIAO Qi,XIAO Tian-Gui,JIN Rong Hua.Analysis on Inter-annual Variation of EastAsian Subtropical Westerly Jet[J].Journal of Chengdu University of Information Technology,2018,(05):68.[doi:10.16836/j.cnki.jcuit.2018.01.013]
[3]高清泉,韩瑽琤,肖天贵.微波通信链路监测降水试验及可行性探究[J].成都信息工程大学学报,2018,(02):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
GAO Qing-quan,HAN Cong-cheng,XIAO Tian-gui.Feasibility Study of Microwave CommunicationLink for Rainfall Monitoring Purposes[J].Journal of Chengdu University of Information Technology,2018,(05):197.[doi:10.16836/j.cnki.jcuit.2018.02.015]
[4]黄 瑶,肖天贵,刘思齐.2016年7月四川持续性强降水的中尺度滤波分析[J].成都信息工程大学学报,2018,(03):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
HUANG Yao,XIAO Tian-gui,LIU Si-qi.Mesoscale Filtering Analysis of Persistent Heavy Rainfall in Sichuan in July 2016[J].Journal of Chengdu University of Information Technology,2018,(05):307.[doi:10.16836/j.cnki.jcuit.2018.03.014]
[5]李雅婷,苏德斌,孙晓光,等.四川盆地风廓线雷达大气折射率结构常数特征分析[J].成都信息工程大学学报,2018,(04):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
LI Ya-ting,SU De-bin,SUN Xiao-guang,et al.Characteristic Analysis of Atmospheric Structure Constant of Refractive Index of
Sichuan Basin based on Wind Profiler Radar[J].Journal of Chengdu University of Information Technology,2018,(05):375.[doi:10.16836/j.cnki.jcuit.2018.04.005]
[6]石 宇,肖子牛,朱克云.夏季角动量输送变化与中国东部降水的关系[J].成都信息工程大学学报,2018,(04):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
SHI Yu,XIAO Zi-niu,ZHU Ke-yun.Relationship between Angular Momentum Transportand Precipitation in Eastern China in Summer[J].Journal of Chengdu University of Information Technology,2018,(05):456.[doi:10.16836/j.cnki.jcuit.2018.04.016]
[7]宾 昕,程志刚,王俊锋,等.近17a秦巴山区NDVI季节变化差异及其海拔依赖性特征分析[J].成都信息工程大学学报,2019,(03):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
BIN Xin,CHENG Zhigang,WANG Junfeng,et al.Seasonal Variation of NDVI and Altitude Dependent Characteristics in Qinling-Daba Mountains in Recent 17 Years[J].Journal of Chengdu University of Information Technology,2019,(05):302.[doi:10.16836/j.cnki.jcuit.2019.03.016]
[8]金凡琦,程志刚,靳立亚,等.成渝城市群热环境效应与植被覆盖度关系研究[J].成都信息工程大学学报,2019,(03):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
JIN Fanqi,CHENG Zhigang,JIN Liya,et al.Study on the Relationship between Thermal Environment Effect and Vegetation Coverage in Chengyu Urban Agglomeration[J].Journal of Chengdu University of Information Technology,2019,(05):308.[doi:10.16836/j.cnki.jcuit.2019.03.017]
[9]元 震,肖天贵.高原低涡与OLR、风场的气候变化及低频信号特征[J].成都信息工程大学学报,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
YUAN Zhen,XIAO Tian-gui.Climate Change and Low-frequency Signal Characteristics of
Plateau Vortex, OLR and Wind Fields[J].Journal of Chengdu University of Information Technology,2018,(05):551.[doi:10.16836/j.cnki.jcuit.2018.05.013]
[10]周 颖,向卫国.四川盆地大气混合层高度特征及其与AQI的相关性分析[J].成都信息工程大学学报,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
ZHOU Ying,XIANG Wei-guo.Analysis of the Characteristics of the Height of Atmospheric Mixed
Layers in Sichuan Basin and its Correlation with AQI[J].Journal of Chengdu University of Information Technology,2018,(05):562.[doi:10.16836/j.cnki.jcuit.2018.05.014]
[11]周 峰,周筠珺,邹书平,等.基于双偏振雷达对一次多单体雹暴微物理特征的观测及数值模拟研究[J].成都信息工程大学学报,2021,36(06):655.[doi:10.16836/j.cnki.jcuit.2021.06.012]
ZHOU Feng,ZHOU Yunjun,ZOU Shuping,et al.Observation and Numerical Simulation of Microphysical Characteristics of a Multi-cell Hail Storm based on Dual Polarization Radar[J].Journal of Chengdu University of Information Technology,2021,36(05):655.[doi:10.16836/j.cnki.jcuit.2021.06.012]
备注/Memo
收稿日期:2022-03-28
基金项目:国家自然科学基金资助项目(41875169); 第二次青藏高原综合科学考察研究资助项目(2019QZKK0104); 国家重点研发计划资助项目(2018YFC1505702); 贵州省科技计划项目黔科合支撑资助项目[2019]2387号,四川省教育厅资助项目(16CZ0021)