REN Xinyue,HE Jianxin,ZHANG Fugui,et al.Characteristic Analysis of a Sea Fog Process based on Millimeter-wave Radar and Research on Visibility Retrieval Algorithm[J].Journal of Chengdu University of Information Technology,2023,38(01):49-56.[doi:10.16836/j.cnki.jcuit.2023.01.008]
基于毫米波雷达的海雾观测及能见度反演算法研究
- Title:
- Characteristic Analysis of a Sea Fog Process based on Millimeter-wave Radar and Research on Visibility Retrieval Algorithm
- 文章编号:
- 2096-1618(2023)01-0049-08
- Keywords:
- sea fog; millimeter-wave radar; radar reflectivity; visibility; neural networks
- 分类号:
- P412.25
- 文献标志码:
- A
- 摘要:
- 基于毫米波雷达数据并结合地面气象观测资料对2021年2月6日发生在福建平潭综合实验区的一次典型海雾过程进行多尺度的特征研究。利用机器学习算法,实现了能见度连续空间范围的有效反演。研究结果表明:毫米波雷达能在该次海雾过程的区域分布、生消转换以及垂直演变上给出重要的特征信息; 基于机器学习的方法能克服传统拟合方法在非线性问题上存在的局限性,其能见度反演精度明显优于线性关系、经典指数关系,能更好地实现能见度点数据向面数据的拓展,为海雾的监测预警提供了一种更为准确有效的途径。
- Abstract:
- Based on the data of millimeter-wave radar and ground meteorological observations, this paper analyzes the multi-scale characteristic of a typical sea fog event in Pingtan comprehensive experimental area on February 6, 2021. On this basis, efficient retrieval of the visibility in continuous spatial scale is realized by using a machine learning algorithm. The specific research results show that:The millimeter-wave radar provides crucial characteristic information about the regional distribution, generation-elimination conversion, and vertical evolution of the sea fog process; The method based on machine learning can solve the problem that the traditional fitting method has limitations in the nonlinear problem, and its accuracy of visibility retrieval is significantly better than linear relationship and classical exponential relationship, which can better upscale visibility data from point to spatial surface data so that we can offer a more accurate and effective way for monitoring and alerting off sea fog.
参考文献/References:
[1] 王彬华.海雾[M].北京:海洋出版社,1983.
[2] Zhang Suping,Ren Zhaopeng,Liu Jingwu,et al.Variations in the Lower Level of the PBL Associated with the Yellow Sea Fog-New Observations by L-Band Radar[J].Journal of Ocean University of China,2008(4):353-361.
[3] 漆梁波.“20160227”青岛水上交通事故的气象条件分析和预报反思[J].海洋预报,2018,35(2):7.
[4] 姜国友.威海港雾航影响因素探析及对策研究[D].大连:大连海事大学,2016.
[5] Zhu J,Chen Y,Zhang L,et al.Demonstration of measuring sea fog with an SNSPD-based Lidar system[J].Scientific Reports,2017,7(1):15113.
[6] 黄惠镕,韩美,潘宁,等.福建一次春季海雾的边界层特征及其成因分析[J].海峡科学,2019(3):5.
[7] 张晶晶,吴福浪,俞科爱,等.基于毫米波雷达的一次海雾过程特征分析[J].气象科技,2020,48(3):9.
[8] 张伟,陈德花,胡雅君,等.闽南沿海一次春季海雾过程微物理特征分析[J].气象,2021,47(2):13.
[9] 仲凌志,刘黎平,葛润生.毫米波测云雷达的特点及其研究现状与展望[J].地球科学进展,2009(4):36-44.
[10] 崔延星,刘黎平,何建新,等.基于云雷达、C波段连续波雷达和激光云高仪融合数据的华南夏季云参数统计分析[J].成都信息工程大学学报,2018,33(3):243-249.
[11] 卢美圻.GPM/DPR星载双频雷达探测降水的敏感性与差异性分析[D].南京:南京信息工程大学,2017.
[12] Mead J B,Mcintosh R E,D Vandemark,et al.Remote Sensing of Clouds and Fog with a 1.4-mm Radar[J].Journal of Atmospheric & Oceanic Technology,1989,6(6):1090-1097.
[13] Li Y,Hoogeboom P,Russchenberg H.A Novel Radar-Based Visibility Estimator[J].IEEE Transactions on Geoscience & Remote Sensing,2017:3150-3168.
[14] 岑炬辉,唐世浩,胡利军,等.降水—雾过程毫米波雷达探测分析[J].气象,2021,47(2):11.
[15] Hamazu K,Hashiguchi H,Wakayama T,et al.A 35 GHz Scanning Doppler Radar for Fog Observations[J].Journal of Atmospheric & Oceanic Technology,2003,20(7):972-986.
[16] Li Y,Hoogeboom P,Russchenberg H.Radar observations and modeling of fog at 35 GHz[C].2014 8th European Conference on Antennas and Propagation(EuCAP)IEEE,2014.
[17] 胡利军,冯凯,杨豪,等.毫米波雷达在北仑港区海雾监测中的应用[J].气象科技,2020,48(2):7.
[18] 刘光普,黄思源,梁莺,等.毫米波雷达在港口海雾观测和能见度反演中的应用[J].干旱气象,2019,37(6):12.
[19] 张振顺,李岩招,蔡世旺.闽东海雾观测及其预报[J].科技创新与生产力,2015(7):54-56.
[20] Gultepe I,MD Müller,Boybeyi Z.A New Visibility Parameterization for Warm-Fog Applications in Numerical Weather Prediction Models[J].Journal of Applied Meteorology & Climatology,2006,45(11):1469-1480.
[21] 马楚焱,祖建,付清盼,等.基于遗传神经网络模型的空气能见度预测[J].环境工程学报,2015(4):6.
[22] 卢志宏.基于BP神经网络的荒漠啮齿动物群落对气候变化滞后响应[D].呼和浩特:内蒙古农业大学,2016.
[23] 安晓.基于BP神经网络的数据预测及报表生成技术研究[D].湘潭:湘潭大学,2016.
[24] 李玉祺,王广民,徐猛.随机OD需求下城市道路交通网络设计问题的BP神经网络算法研究[J].系统工程理论与实践,2021,41(11).
[25] Y.Yan,H.Wang,G.Li,et al.Projection of Future Extreme Precipitation in China Based on the CMIP6 from a Machine Learning Perspective[J].Remote Sens.2022,14:4033.
[26] 谢雨诗,何丽娜,徐文燕,等.基于AFOA-BP神经网络的燃气轮机研制风险预测[J].热能动力工程,2021,36(10):7.
[27] Gultepe I,Milbrandt J A,Zhou B.Marine Fog:A Review on Microphysics and Visibility Prediction[M].Springer International Publishing,2017.
备注/Memo
收稿日期:2022-05-31
基金项目:四川省科技厅重点研发计划资助项目(2022YFS0541); 中国气象局大气探测重点开放实验室资助项目(2021KLAS02Z)