NIU Mengchen,XU Zixin,CHAN Yukhee,et al.Research on Scalable Image Display Technology[J].Journal of Chengdu University of Information Technology,2023,38(02):142-147.[doi:10.16836/j.cnki.jcuit.2023.02.003]
分级图像显示技术研究
- Title:
- Research on Scalable Image Display Technology
- 文章编号:
- 2096-1618(2023)02-0142-06
- Keywords:
- scalable image display; discrete wavelet transform; information hiding; image reconstruction
- 分类号:
- TP391.41
- 文献标志码:
- A
- 摘要:
- 分级图像显示是指利用单一信道传输可分级的多媒体信息的一种创新型显示技术,允许用单一版本的图像满足不同显示设备的显示需求。提出一种针对非数字图像的分级图像显示技术,主要思路是利用离散小波变换实现在灰度图像中嵌入不同类型的扩展图像信息,使客户可根据特定需求提取相应信息进行显示。技术框架允许以单一的灰度图像版本重建包括但不限于彩色图像、深度图像、热力图像等不同类型的图像。仿真实验表明,算法能有效重建彩色图像及深度图像,不仅重建的图像质量较高,而且嵌入信息对灰度图像的破坏也较小,算法运行速度快,实时性好。为分级图像显示技术提供了一种具体的解决方案,使分级图像显示成为可能,具有较好的市场应用前景。
- Abstract:
- Scalable image display is an innovative display technology that transmits scalable multimedia information in a single channel. It allows the use of a single version of the image to meet the display needs of different display devices. This paper proposes a scalable image display technology framework for non-digital images. The main idea is to embed different types of extended image information in gray-scale images by using discrete wavelet transform technology, so that customers can extract the corresponding information for display according to specific needs. This technical framework allows the reconstruction of different types of images including but not limited to color images, depth images, thermal images, etc. with a single gray-scale image version. Simulation results show that the algorithm can effectively reconstruct color images and depth images, with high quality and less damage to gray images.And the algorithm runs fast and has good real-time performance. The algorithm in this paper provides a specific solution for the concept of image hierarchical display, which makes image hierarchical display possible and has a good market prospect in application.
参考文献/References:
[1] Chaumont M, Puech W.A grey-level image embedding its color palette[C].in Proc.IEEE Int.Conf.Image Process.,2007:389-392.
[2] 张丽娟,朱会龙.基于增强现实技术的激光全息三维图像重建研究[J].激光杂志,2022,43(5):151-155.
[3] 何志鹏.数字多媒体图像处理技术研究[J].电脑知识与技术,2020,16(2):212-213.
[4] 施秦,刘畅,梁谦旺,等.基于GAN的面向博客发布的图像隐写术[J].网络安全技术与应用,2020(11):59-61.
[5] 梁辉.图像隐写与隐写分析算法研究[D].广州:华南理工大学,2019.
[6] 甘志超,刘丹.基于HD和SVD的DWT变换的数字图像水印[J].现代信息科技,2022,6(1):40-42.
[7] 肖红,陈欣燕.基于格雷码映射和LSB的彩色图像量子隐写算法[J].吉林大学学报(信息科学版),2022,40(2).
[8] 段明月,李爽,张源策,等.图像隐写分析研究综述[J].电脑知识与技术,2022,18(9):3-5.
[9] 蔡森,任延珍,王丽娜.基于联合失真的AAC安全隐写算法[J].信息安全学报,2022,7(2).
[10] Chaumont M,Puech W.A fast and efficient method to protect color images[J].Proc.SPIE,2007,6508.
[11] Chaumont M,Puech W.Protecting the color information by hiding it[M].London:in Recent Advances in Signal Processing.IntechOpen,2009.
[12] Chaumont M,Puechb W,Lahanier C.Securing color information of an image by concealing the color palette[C].J. Syst.Softw.,2013,86(3):809-825.
[13] Tanaka G,Suetake N,Uchino E.Invertible color-to-monochrome transformation based on clustering with lightness constraint[C].in Proc.IEEE Int.Conf.Syst.,Man Cybern.2010:2151-2154.
[14] Xu Z X,Chan Y H.Improving reversible color-to-grayscale conversion with halftoning[J].Signal Process.,Image Commun.,2017,52:111-123.
[15] Queiroz R L D,Braun K M.Color to gray and back:Color embedding into textured gray images[J].IEEE Trans. Image Process.,2006,16(6):1464-1470.
[16] Queiroz R L.Reversible color-to-gray mapping using subband domain texturization[J].Pattern Recognit. Lett.,2010,31(4):269-276.
[17] Ko K W,Kwon O S,Son C H,et al.Color embedding and recovery based on wavelet packet transform[J].J.Imag.Sci.Technol.,2008,52(1):10501.
[18] Ko K W,Kim D C,Kyung W Y,et al.Color embedding and recovery using wavelet packet transform with pseudorandomized saturation code[J].J. Imag.Sci.Technol.,2011,55(3):30501.
[19] Horiuchi T,Nohara F,Tominaga S,Accurate reversible color-to-gray mapping algorithm without distortion conditions[J].Pattern Recognit.Lett.,2010,31(15):2405-2414.
[20] 何坚,刘新远.RGB-D和惯性传感器融合的地面障碍物检测技术[J].计算机辅助设计与图形学学报,2022,34(2):254-263.
[21] 郭云飞.关于线性模型的稳健模型选择和模型平均[D].天津:南开大学,2021.
[22] 王硕汝.基于关键轨迹挖掘的离线策略评估研究[D].北京:北京交通大学,2021.
[23] 叶义琴.部分线性模型中的几类广义差分无偏估计研究[D].贵阳:贵州民族大学,2020.
[24] 白雪,龙兵.幂分布的有效估计[J].广西民族大学学报(自然科学版),2022,28(1):70-75.
[25] 肖康,田立君,王中阳.基于深度学习的低信噪比下的快速超分辨荧光显微成像[J].中国激光,2020,47(10):222-232.
[26] 郑运平,李祥鹏.基于迭代控制搜索策略的分形图像压缩算法[J].华中科技大学学报(自然科学版),2020,48(7):1-6.
[27] 郭静,孟昱煜.利用相对熵度量节点结构相似性的链路预测算法[J].兰州交通大学学报,2022,41(3):77-85.
[28] 何小梅,章联军,陈芬,等.深度和结构相似性引导的四参考视点融合算法[J].宁波大学学报(理工版),2022,35(2):96-104.
[29] 邓星涛,闵海.基于纹理结构相似性和边缘信息的水平集纹理图像分割[J].合肥工业大学学报(自然科学版),2022,45(1):30-38.
[30] 蒙晓宇,朱磊,张博,等.基于结构相似性粗定位与背景差分细分割的运动目标检测方法[J].科学技术与工程,2021,21(36):15563-15570.
[31] 徐金红,王煜婷.长三角地区产业结构相似性研究[J].海峡科学,2022(2):88-91.
[32] 韩佳雪,汪西原,张文坤.一种改进的彩色遥感图像边缘检测算法研究[J].计算机仿真,2021,38(2):383-388.
[33] 张秋余,冯玉春.自适应的密文彩色图像可逆数据隐藏算法[J].计算机应用与软件,2020,37(2):313-321.
[34] 兰小艳,陈莉,贾建,等.基于小波和PCA的自适应颜色空间彩色图像去噪[J].计算机应用研究,2018,35(3):934-939.
[35] 文东旭.基于多带小波变换的彩色图像压缩编码[D].长沙:湖南师范大学,2019.
相似文献/References:
[1]戴宇睿,安俊秀,李焯炜.基于信号分解降噪的CNN-BiLSTM金融市场趋势预测[J].成都信息工程大学学报,2023,38(01):28.[doi:10.16836/j.cnki.jcuit.2023.01.005]
DAI Yurui,AN Junxiu,LI Zhuowei.CNN-BiLSTM Financial Market Trend Prediction based on Signal Decomposition and Noise Reduction[J].Journal of Chengdu University of Information Technology,2023,38(02):28.[doi:10.16836/j.cnki.jcuit.2023.01.005]
备注/Memo
收稿日期:2022-06-15
基金项目:四川省科技厅资助项目(2020YFH0122)