PDF下载 分享
[1]任不凡,黄小燕,吴思东,等.基于语义信息的三维点云全景分割方法研究[J].成都信息工程大学学报,2023,38(05):535-542.[doi:10.16836/j.cnki.jcuit.2023.05.007]
 REN Bufan,HUANG Xiaoyan,WU Sidong,et al.Research on Panoptic Segmentation of 3D Point Clouds based on Semantic Information[J].Journal of Chengdu University of Information Technology,2023,38(05):535-542.[doi:10.16836/j.cnki.jcuit.2023.05.007]
点击复制

基于语义信息的三维点云全景分割方法研究

参考文献/References:

[1] Zermas D,Izzat I,Papanikolopoulos N.Fast segmentation of 3d point clouds:A paradigm on lidar data for autonomous vehicle applications[C].2017 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2017:5067-5073.
[2] Shin M O,Oh G M,Kim S W,et al.Real-time and accurate segmentation of 3-D point clouds based on Gaussian process regression[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(12):3363-3377.
[3] Yurtsever E,Lambert J,Carballo A,et al.A survey of autonomous driving:Common practices and emerging technologies[J].IEEE access,2020,8:58443-58469.
[4] Kirillov A,Girshick R,He K,et al.Panoptic feature pyramid networks[C].Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,2019:6399-6408.
[5] Zhou Z,Zhang Y,Foroosh H.Panoptic-polarnet:Proposal-free lidar point cloud panoptic segmentation[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13194-13203.
[6] Gasperini S,Mahani M A N,Marcos-Ramiro A,et al.Panoster: End-to-end panoptic segmentation of lidar point clouds[J].IEEE Robotics and Automation Letters,2021,6(2):3216-3223.
[7] Hong F,Zhou H,Zhu X,et al.Lidar-based panoptic segmentation via dynamic shifting network[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13090-13099.
[8] Thomas H,Qi C R,Deschaud J E,et al.Kpconv: Flexible and deformable convolution for point clouds[C].Proceedings of the IEEE/CVF international conference on computer vision,2019:6411-6420.
[9] Lang A H,Vora S,Caesar H,et al.Pointpillars: Fast encoders for object detection from point clouds[C].Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,2019:12697-12705.
[10] Shi S,Guo C,Jiang L,et al.Pv-rcnn: Point-voxel feature set abstraction for 3d object detection[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10529-10538.
[11] Singh G,Gupta S,Lease M,et al.Range-Net: A High Precision Streaming SVD for Big Data Applications[J].arXiv preprint arXiv:2010.14226,2020.
[12] Zhou H,Zhu X,Song X,et al.Cylinder3d:An effective 3d framework for driving-scene lidar semantic segmentation[J].arXiv preprint arXiv:2008.01550,2020.
[13] Zermas D,Izzat I,Papanikolopoulos N.Fast segmentation of 3d point clouds:A paradigm on lidar data for autonomous vehicle applications[C].2017 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2017:5067-5073.
[14] He L,Chao Y,Suzuki K.A run-based two-scan labeling algorithm[J].IEEE transactions on image processing,2008,17(5):749-756.
[15] Behley J,Garbade M,Milioto A,et al.Semantickitti: A dataset for semantic scene understanding of lidar sequences[C].Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9297-9307.
[16] Schumann O,Hahn M,Scheiner N,et al.RadarScenes:A real-world radar point cloud data set for automotive applications[C].2021 IEEE 24th International Conference on Information Fusion(FUSION).IEEE,2021:1-8.
[17] Kirillov A,He K,Girshick R,et al.Panoptic segmentation[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:9404-9413.

相似文献/References:

[1]卢 丽,许源平,卢 军,等.基于社会力异常检测改进算法的人群行为模型[J].成都信息工程大学学报,2018,(01):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
 LU Li,XU Yuan-ping,LU Jun,et al.A Crowd Behavior Model based on an ImprovedSocial Force Anomaly Detection Algorithm[J].Journal of Chengdu University of Information Technology,2018,(05):1.[doi:10.16836/j.cnki.jcuit.2018.01.001]
[2]胡 婕,陶宏才.基于深度学习的领域问答系统的设计与实现[J].成都信息工程大学学报,2019,(03):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
 HU Jie,TAO Hongcai.Design and Implementation of Domain Question Answering System based on Deep Learning[J].Journal of Chengdu University of Information Technology,2019,(05):232.[doi:10.16836/j.cnki.jcuit.2019.03.004]
[3]王 强,李孝杰,陈 俊.基于He-Net的卷积神经网络算法的图像分类研究[J].成都信息工程大学学报,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
 WANG Qing,LI Xiao-jie,CHEN Jun.Research on Image Classification based on HE-Net Convolutional Neural Networks[J].Journal of Chengdu University of Information Technology,2017,(05):503.[doi:10.16836/j.cnki.jcuit.2017.05.007]
[4]冉元波,孙 敏,高梦清,等.双偏振天气雷达水凝物识别研究[J].成都信息工程大学学报,2017,(06):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
 RAN Yuan-bo,SUN Min,GAO Meng-qing,et al.Study on Hydrometeor Identification based on Deep Learning[J].Journal of Chengdu University of Information Technology,2017,(05):590.[doi:10.16836/j.cnki.jcuit.2017.06.003]
[5]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
 ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(05):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[6]谭诗雨,杨 玲,师春香,等.复杂背景下银行卡号识别方法研究[J].成都信息工程大学学报,2021,36(03):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
 TAN Shiyu,YANG Ling,SHI Chunxiang,et al.Bank Card Number Recognition System under the Complex Background based on Deep Learning[J].Journal of Chengdu University of Information Technology,2021,36(05):280.[doi:10.16836/j.cnki.jcuit.2021.03.007]
[7]郭楠馨,林宏刚,张运理,等.基于元学习的僵尸网络检测研究[J].成都信息工程大学学报,2022,37(06):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
 GUO Nanxin,LIN Honggang,ZHANG Yunli,et al.Botnet Detection Method based on Meta-Learning Network[J].Journal of Chengdu University of Information Technology,2022,37(05):615.[doi:10.16836/j.cnki.jcuit.2022.06.001]
[8]李 静,鲜 林,王海江.基于YOLOv3的船只检测算法研究[J].成都信息工程大学学报,2023,38(01):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
 LI Jing,XIAN Lin,WANG Haijiang.Research on Ship Detection Algorithm based on YOLOv3[J].Journal of Chengdu University of Information Technology,2023,38(05):37.[doi:10.16836/j.cnki.jcuit.2023.01.006]
[9]毛 波,杨 昊,周世杰,等.基于CMA-REPS格点预报数据的深度学习风速订正方法[J].成都信息工程大学学报,2023,38(03):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
 MAO Bo,YANG Hao,ZHOU Shijie,et al.A Deep Learning Method for Wind Speed Grid Point Forecasting Data Correction based on CMA-REPS[J].Journal of Chengdu University of Information Technology,2023,38(05):264.[doi:10.16836/j.cnki.jcuit.2023.03.003]
[10]张卓然,张 倩,宋 智,等.基于残差Swin Transformer的天气图像识别技术研究[J].成都信息工程大学学报,2023,38(06):637.[doi:10.16836/j.cnki.jcuit.2023.06.003]
 ZHANG Zhuoran,ZHANG Qian,SONG Zhi,et al.Research on Weather Image Recognition based on Residual Swin Transformer[J].Journal of Chengdu University of Information Technology,2023,38(05):637.[doi:10.16836/j.cnki.jcuit.2023.06.003]

备注/Memo

收稿日期:2022-09-22
基金项目:国家自然科学基金资助项目(62103064); 四川省科技厅资助项目(2021YFG0295、2021YFG0133、2021YFN0104、2021YFH0069、2022YFN 0020、2022YFS0565); 四川省无人系统智能感知控制技术工程实验室开放课题资助项目(WRXT2020-001、WRXT2020-002、WRXT2020-005)
通信作者:吴思东.E-mail:wsd@cuit.edu.cn

更新日期/Last Update: 2023-09-10