ZHANG Yuan,FAN Sirui,LIU Xiaolu,et al.Cloud Microphysical Characteristics Detection and Analysis based on Aircraft Observations during a Winter Stratiform Cloud Dispersal Period in the Sichuan Basin[J].Journal of Chengdu University of Information Technology,2023,38(05):589-594.[doi:10.16836/j.cnki.jcuit.2023.05.014]
四川盆地冬季一次层状云消散期云微物理特征的飞机探测分析
- Title:
- Cloud Microphysical Characteristics Detection and Analysis based on Aircraft Observations during a Winter Stratiform Cloud Dispersal Period in the Sichuan Basin
- 文章编号:
- 2096-1618(2023)05-0589-06
- 分类号:
- P412.24
- 文献标志码:
- A
- 摘要:
- 为研究四川盆地层状云系结构及微物理特征,利用2019年12月18日机载DMT探测系统获取的云微物理资料,结合高空、地面、卫星等气象数据,通过时空序列分析方法,对四川省一次层状云降水消散期微物理特征进行分析。结果显示:探测云系为云顶温度较低的稳定性层状云,云顶以小云滴为主,对应地面降水较小。空中云垂直和水平结构分布不均匀,云粒子探头(CDP)、二维冰晶粒子探头(CIP)、二维降水粒子探头(PIP)探测粒子浓度范围分别为0.035~338.318个/cm3、4.17×10-5~18.203个/cm3、3.28×10-6~0.408个/cm3,粒子直径范围分别为2.50~49 μm、25.32~1547.18 μm、104.23~5525.68 μm,随着高度增加,粒子浓度及粒子直径范围均变大。根据二维云粒子图像显示,2700~3000 m以过冷水滴及小冰晶粒子为主,4500~4800 m高层为枝状冰晶和宽枝冰晶粒子。云粒子谱均呈多峰分布,总体上云粒子越大,其浓度越小。本次探测过程中云中存在有利于人工增雨的“可播区”,云中“可播区”呈不连续分布,本次飞行的可播区在-10 ℃~-15 ℃,对应高度在4500~4840 m。
- Abstract:
- To investigate the cloud structure and microphysical characteristics of stratiform precipitation system in Sichuan Basin, the cloud microphysical data obtained by the airborne DMT detection system on December 18, 2019, were used to analyze the microphysical characteristics of a stratiform precipitation dissipation period in Sichuan Province by spatiotemporal series analysis method, combined with the upper air, ground, and satellite meteorological data. The results show that the detection cloud system is a low stability stratiform cloud in cloud top temperature, and the cloud top is dominated by small cloud droplets, corresponding to small surface precipitation. The vertical and horizontal structures of clouds in the air were uneven. The particle concentration ranges detected by the Cloud Droplet Probe(CDP), Cloud Imaging Probe(CIP), and Precipitation Imaging Probe(PIP)were 0.035-338.318 cm-3, 4.17×10-5-18.203 cm-3 and 3.28×10-6-0.408 cm-3 respectively, and the particle diameter ranges were 2.50-49 respectively μm、25.32-1547.18 μm、104.23-5525.68 μm. With the increase in height, the range of particle concentration and particle diameter increases. According to the two-dimensional cloud particle image, supercooled water droplets and small ice crystal particles were mainly at about 2700-3000 m, and dendritic ice crystals and wide dendritic ice crystals was at about 4500-4800 m. Using the concentration of particles in the cloud detected by CDP probe and the concentration of large particles in the cloud detected by CIP probe as the two main indicators to judge the seeding degree in the cloud. The analysis revealed the presence of a "seeding area" in the cloud that was favorable for artificial precipitation enhancement. The "seeding area" exhibited a discontinuous distribution. The characteristics of the cloud particle spectrum at typical times were analyzed, and it is found that the cloud particle spectrum was multi-peak distribution, In general, the larger the cloud particle, the smaller its concentration. During this exploration process, there was a “seeding area” in the cloud that was conducive to artificial precipitation enhancement. The “seeding area” in the cloud showed a discontinuous distribution, and the seeding area for this flight was basically between -10 ℃ and -15 ℃,with corresponding heights ranging from 4500 m to 4840 m.
参考文献/References:
[1] 胡志晋.层状云人工增雨机制、条件和方法的探讨[J].应用气象学报,2001,12(Z1):10-13.
[2] 刘莹莹,牛生杰,封秋娟,等.一次积层混合云的形成过程和微物理观测[J].大气科学学报,2012,35(2):186-196.
[3] 张正国,卢广献,汤达章,等.广西秋季层状云微物理特征分析[J].气象科技,2018,46(3):545-555.
[4] 张佃国,姚展予,龚佃利,等.环北京地区积层混合云微物理结构飞机联合探测研究[J].大气科学学报,2011,34(1):109-121.
[5] 秦彦硕,刘世玺,范根昌,等.华北地区春季一次层状云的微物理特征及可播性分析 [J].干旱气象,2015,33(3):481-489.
[6] 孙泓聘,李培仁,闫世明,等.华北层状冷云降水微物理特征及人工增雨可播性研究[J].气象,2011,37(10):1252-1261.
[7] 郭学良,付丹红,郭欣,等.我国云降水物理飞机观测研究进展[J].应用气象学报,2021,32(6):641-652.
[8] 陶树旺,刘卫国,李念童,等.层状冷云人工增雨可播性实时识别技术研究[J].应用气象学报,2001,12(增刊):14-22.
[9] 于丽娟,姚展予.一次层状云飞机播云试验的云微物理特征及响应分析[J].气象,2009,35(10):8-23.
[10] 周德平,宫福久,高建春,等. 一次飞机播云的微物理效应分析. 气象科学.2004,24(4):405-412.
[11] 辛乐,姚展予.一次积层混合云飞机播云对云微物理过程影响效应的分析[J].气象,2011,37(2):194-202.
[12] 赵增亮.层状云的微物理结构探测研究[D].北京:北京大学,2010.
[13] 李冬楠,刘星光,高倩楠,等.一次东北冷涡过程的宏微观物理特征分析[J].气象科技,2021,49(2):227-234.
[14] 封秋娟,李培仁,丁建芳,等.山西地区一次层状云降水过程的微观特征观测分析[J].大气科学学报,2013,36(5):537-545.
[15] 蔡兆鑫,周毓荃,蔡淼.一次积层混合云系人工增雨作业的综合观测分析[J].高原气象,2013,32(5):1460-1469.
[16] 王维佳,董晓波,石立新,等.一次秋季暖云微物理结构探测试验[J].气象科技,2011, 39(5):656-660.
[17] Rosenfeld D,Lensky I M. Spaceborne sensed insights into precipitation formation processes in continental and maritime cloud[J].Bull AmerMeteor Soc,1998,79(11): 2457-2476.
[18] 刘贵华,余兴,师春香,等.FY-3A/VIRR反演云微物理特征及与TERRA/MODIS反演结果的比较[J].高原气象,2011,30(2):461-470.
相似文献/References:
[1]林 丹,王维佳.四川盆地初夏一次飞机增雨作业的效果检验[J].成都信息工程大学学报,2020,35(01):117.[doi:10.16836/j.cnki.jcuit.2020.01.016]
LIN Dan,WANG Weijia.On Effect Assessment of an Airborne Cloud Seeding Operationin Early Summer in Sichuan Basin[J].Journal of Chengdu University of Information Technology,2020,35(05):117.[doi:10.16836/j.cnki.jcuit.2020.01.016]
[2]范思睿,王维佳,刘贵华,等.基于NPP卫星反演四川盆地夏季云降水微物理特征[J].成都信息工程大学学报,2021,36(04):467.[doi:10.16836/j.cnki.jcuit.2021.04.017]
FAN Sirui,WANG Weijia,LIU Guihua,et al.Retrieval of Microphysical Properties of Summer Cloud Precipitation in Sichuan Basin based on NPP Satellitedata[J].Journal of Chengdu University of Information Technology,2021,36(05):467.[doi:10.16836/j.cnki.jcuit.2021.04.017]
备注/Memo
收稿日期:2022-10-20
基金项目:中国气象局云雾物理环境重点实验室开放课题资助项目(2019Z01602); 中国气象局大气探测重点开放实验室开放课题资助项目(2021KLAS04M); 高原与盆地暴雨旱涝灾害四川省重点实验室科技发展基金资助项目(2017-青年-15、SCQXKJQN2019025、SCQXKJYJXZD202105)