PDF下载 分享
[1]张卓然,张 倩,宋 智,等.基于残差Swin Transformer的天气图像识别技术研究[J].成都信息工程大学学报,2023,38(06):637-642.[doi:10.16836/j.cnki.jcuit.2023.06.003]
 ZHANG Zhuoran,ZHANG Qian,SONG Zhi,et al.Research on Weather Image Recognition based on Residual Swin Transformer[J].Journal of Chengdu University of Information Technology,2023,38(06):637-642.[doi:10.16836/j.cnki.jcuit.2023.06.003]
点击复制

基于残差Swin Transformer的天气图像识别技术研究

参考文献/References:

[1] Lu C,Lin D,Jia J,et al.Two-class weather classifica-tion[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3718-3725.
[2] Song H,Chen Y,Gao Y.Weather condition recognition based on feature extraction and K-NN.Berlin:Springer,2014:199-210.
[3] Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[4] Lin D,Lu C,Huang H,et al.RSCM:Region selection and concurrency model for multi-class weather recognition[J].IEEE Transactions on Image Processing,2017,26(9):4154-4167.
[5] Zhao B,Li X,Lu X,et al.A CNN–RNN architecture for multi-label weather recognition[J].Neurocomputing,2018,322: 47-57.
[6] Wang C,Liu P,Jia K,et al.Identification of weather phenomena based on lightweight convolutional neural networks[J].CMC-COMPUTERS MATERIALS & CONTINUA,2020,64(3):2043-2055.
[7] Tan L,Xuan D,Xia J,et al.Weather Recognition Based on 3C-CNN[J].KSII Transactions on Internet and Information Systems(TIIS),2020,14(8):3567-3582.
[8] Xiao H,Zhang F,Shen Z,et al.Classification of Weather Phenomenon From Images by Using Deep Convolutional Neural Network[J].Earth and Space Science,2021,8(5):e2020EA001604.
[9] Dosovitskiy A,Beyer L,Kolesnikov A,et al.An image is worth 16x16 words:Transformers for image recognition at scale[C].International Conference on Learning Representations,2021.
[10] 刘文婷,卢新明.基于计算机视觉的Transformer研究进展[J].计算机工程与应用,2022,58(6):1-16.
[11] Liu Z,Lin Y,Cao Y,et al. Swin transformer: Hierarchical vision transformer using shifted windows[C].Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[12] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C].Proceedings of the IEEE conference on computer vision and pattern recognition.2016:770-778.
[13] Huang G,Liu Z,Laurens V,et al.Densely Connected Convolutional Networks[C].IEEE Computer Society.IEEE Computer Society,2016.
[14] Wright L,Demeure N.Ranger21:a synergistic deep learning optimizer[J].arXiv preprint arXiv:2106.13731,2021.
[15] Liu L,Jiang H,He P,et al.On the variance of the adaptive learning rate and beyond[C].ICLR,2020.
[16] Zhang M,Lucas J,Ba J,et al.Lookahead optimizer:k steps forward,1 step back[J].Advances in neural information processing systems,2019,32.
[17] Wang C,Liu P,Jia K,et al.Identification of weather phenomena based on lightweight convolutional neural networks[J].CMC-COMPUTERS MATERIALS & CONTINUA,2020,64(3):2043-2055.

相似文献/References:

[1]陈 留,杨笔锋,谢 欢,等.基于纹理和SVM的地面凝结现象观测方法研究[J].成都信息工程大学学报,2022,37(06):622.[doi:10.16836/j.cnki.jcuit.2022.06.002]
 CHEN Liu,YANG Bifeng,XIE Huan,et al.A Texture-based SVM Observation of Ground Condensation Phenomenon[J].Journal of Chengdu University of Information Technology,2022,37(06):622.[doi:10.16836/j.cnki.jcuit.2022.06.002]

备注/Memo

收稿日期:2022-11-20
基金项目:四川省科技厅资助项目(2021005); 四川省重点实验室科技发展基金资助项目(2018-青年-11)
通信作者:何嘉.E-mail:hejia@cuit.edu.cn

更新日期/Last Update: 2023-12-10