ZHANG Maolin,DENG Xiaobo,LIU Hailei,et al.Downscaling Study based on GFS Air Temperature[J].Journal of Chengdu University of Information Technology,2023,38(06):720-727.[doi:10.16836/j.cnki.jcuit.2023.06.014]
基于全球预报系统气温的降尺度研究
- Title:
- Downscaling Study based on GFS Air Temperature
- 文章编号:
- 2096-1618(2023)06-0720-08
- Keywords:
- GFS; air temperature; neural network; downscaling
- 分类号:
- P456.7
- 文献标志码:
- A
- 摘要:
- 目前大多数数值预报的气温产品由于其粗略的空间分辨率,在局部尺度上具有局限性。为得到高分辨率的气温产品,利用美国国家环境预报中心(NCEP)2020年全球预报系统(GFS)气温预报数据, 基于神经网络开发一种降尺度模型。将该方法应用于中国湖南省,成功将预测气温从0.25°×0.25°的网格数据降尺度为250 m×250 m的网格数据。利用97个国家级气象站对降尺度后的气温进行精度评估,其均方根误差为1.53 ℃,相关系数为0.982,偏差为-0.01 ℃。与降尺度前相比,降尺度后的气温与台站气温有更好的一致性,尤其是在高海拔地区。最后也将降尺度后的气温与ERA5-Land气温产品进行对比,其准确性优于ERA5-Land 气温产品。
- Abstract:
- At present, most of the temperature products of numerical prediction have limitations on local scale due to their rough spatial resolution. In order to obtain high resolution temperature products, a downscaling model is developed based on neural network using the global forecast system(GFS)temperature forecast data from the National Environmental Prediction Center(NCEP)in 2020. The method was applied to Hunan Province, China, and the predicted temperature was successfully changed from 0.25 °×0.25 ° grid data downscaling to 250 m×250 m grid data.The data used to evaluate the accuracy of the downscaling temperature include 97 national meteorological stations. The root mean square error was 1.53 ℃, the correlation coefficient was 0.982, and the deviation was -0.01 ℃. Compared with the temperature before the downscaling, the temperature after the downscaling is more consistent with the temperature at the station, especially at high altitude. Finally, the temperature after scaling down is also compared with the ERA5-Land temperature product, and the results show the accuracy is better than that of the ERA5-Land temperature product.
参考文献/References:
[1] Sicart J E,Hock R,Six D.Glacier melt,air temperature,and energy balance in different climates:The Bolivian Tropics,the French Alps,and northern Sweden[J].Journal of Geophysical Research:Atmospheres,2008,113(D24).
[2] Kosa P.Air Temperature and Actual Evapotranspiration Correlation Using Landsat 5 TM[J].Satellite Imagery.2009,43:605-611.
[3] Juknys R.Response of different agricultural plants to elevated CO2 and air temperature[J].Zemdirbyste,2011,98:259-266.
[4] Jones P D.Surface air temperature and its changes over the past 150 years[J].Reviews of Geophysics,1999,37(2):173-199.
[5] Zhou J.A Thermal Sampling Depth Correction Method for Land Surface Temperature Estimation From Satellite Passive Microwave Observation Over Barren Land[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(8):4743-4756.
[6] Dodson R,Marks D.Daily air temperature interpolated at high spatial resolution over a large mountainous region[J].Climate Research,1997,8(1):1-20.
[7] Willmott C J,Matsuura K.Smart Interpolation of Annually Averaged Air Temperature in the United States[J].Journal of Applied Meteorology and Climatology,1995,34(12):2577-2586.
[8] Taylor K E,Stouffer R J,Meehl G A.An Overview of CMIP5 and the Experiment Design[J].Bulletin of the American Meteorological Society,2012,93(4):485-498.
[9] Kalnay.The NCEP/NCAR 40-Year Reanalysis Project[J].Bulletin of the American Meteorological Society,1996,77(3):437-472.
[10] Onogi K.The JRA-25 Reanalysis[J].Journal of the Meteorological Society of Japan.Ser.II,2007,85(3):369-432.
[11] Wang S.Comparison of surface air temperature derived from NCEP/DOE R2,ERA-Interim,and observations in the arid northwestern China:a consideration of altitude errors[J].Theoretical and Applied Climatology,2015,119(1):99-111.
[12] Kitoh A.Monsoons in a changing world:A regional perspective in a global context[J].Journal of Geophysical Research:Atmospheres,2013,118(8):3053-3065.
[13] Pan X.Dynamic downscaling of near-surface air temperature at the basin scale using WRF-a case study in the Heihe River Basin,China[J].Frontiers of Earth Science,2012,6(3):314-323.
[14] Giorgi F,Mearns L O.Approaches to the simulation of regional climate change:A review[J].Reviews of Geophysics,1991,29(2):191-216.
[15] Adam J C.BioEarth:Envisioning and developing a new regional earth system model to inform natural and agricultural resource management[J].Climatic Change,2015,129(3):555-571.
[16] Yang Z L.Foreword to the special issue:regional earth system modeling[J].Climatic Change,2015,129(3):365-368.
[17] Charles S P,Bates B C,Hughes J P.A spatiotemporal model for downscaling precipitation occurrence and amounts[J].Journal of Geophysical Research:Atmospheres,1999,104(D24):31657-31669.
[18] Fan L.Statistical downscaling of summer temperature extremes in northern China[J].Advances in Atmospheric Sciences,2013,30(4):1085-1095.
[19] Maraun D.Precipitation downscaling under climate change:Recent developments to bridge the gap between dynamical models and the end user[J].Reviews of Geophysics,2010,48(3):3-4.
[20] Schoof J T,Pryor S C.Downscaling temperature and precipitation:a comparison of regression-based methods and artificial neural networks[J].International Journal of Climatology,2001,21(7):773-790.
[21] Huth R.Statistical Downscaling of Daily Temperature in Central Europe[J].Journal of Climate,2002,15(13):1731-1742.
[22] Hofer M,Marzeion B,Mölg T,et al.A statistical downscaling method for daily air temperature in data-sparse,glaciated mountain environments[J].Geosci.Model Dev.,2015,8(3):579-593.
[23] Jha,S K.A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature[J].Water Resources Research,2015,51(8):6244-6261.
[24] Ramírez M C,Ferreira N J,Velho H F C,et al.Linear and Nonlinear Statistical Downscaling for Rainfall Forecasting over Southeastern Brazil[J].Weather and Forecasting,2006,21(6):969-989.
[25] Ren Z,Xiong A.Operational System Development on Three-step Quality Control of Observations from AWS[J].Meteorological Monthly,2007,33(1):19-24.
[26] Muñoz-Sabater J.ERA5-Land:a state-of-the-art global reanalysis dataset for land applications[J].Earth Syst.Sci.Data,2021,13(9):4349-4383.
[27] Cao B.The ERA5-Land soil temperature bias in permafrost regions[J].The Cryosphere,2020,14(8):2581-2595.
[28] Mao K B.Near-surface air temperature estimation from ASTER data based on neural network algorithm[J].International Journal of Remote Sensing,2008,29(20):6021-6028.
[29] Lin S.Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa[J].International Journal of Applied Earth Observation and Geoinformation,2012,18(1):128-140.
[30] Good,Elizabeth.Daily minimum and maximum surface air temperatures from geostationary satellite data[J].Journal of Geophysical Research Atmospheres,2015,120(6):2306-2324.
[31] Liu S.Evaluating Four Remote Sensing Methods for Estimating Surface Air Temperature on a Regional Scale[J].Journal of Applied Meteorology and Climatology,2017,56(3):803-814.
[32] Williamson S N.Spring and summer monthly MODIS LST is inherently biased compared to air temperature in snow covered sub-Arctic mountains[J].Remote Sensing of Environment,2017,189:14-24.
[33] Minder J R,Mote P W,Lundquist J D.Surface temperature lapse rates over complex terrain:Lessons from the Cascade Mountains[J].Journal of Geophysical Research:Atmospheres,2010,115(D14):113-116.
[34] Rao Y.Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau[J].Remote Sensing of Environment,2019,234:111462.
[35] Li X.Developing a 1km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States[J].Remote Sensing of Environment,2018,215:74-84.
[36] Schwingshackl C,Hirschi M,Seneviratne S I.Quantifying Spatiotemporal Variations of Soil Moisture Control on Surface Energy Balance and Near-Surface Air Temperature[J].Journal of Climate,2017,30(18):7105-7124.
[37] Gebremichael M.Scaling of tropical rainfall as observed by TRMM precipitation radar[J]. Atmospheric Research,2008,88(3):337-354.
[38] Piles M.Downscaling SMOS-Derived Soil Moisture Using MODIS Visible/Infrared Data[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(9):3156-3166.
[39] Li X,Wang L,Chen D,et al.Near-surface air temperature lapse rates in the mainland China during 1962-2011[J].Journal of Geophysical Research:Atmospheres,2013,118:7505-7515.
相似文献/References:
[1]刘秀群,张学禹,冯 婕.厄尔尼诺年对金堂气温和旱涝的影响[J].成都信息工程大学学报,2017,(增刊1):48.
[2]张舒姝,颜 萍,匡凤雪.都江堰气候变化特征分析[J].成都信息工程大学学报,2017,(增刊1):65.
[3]王 林,王 磊,李 哲,等.青藏高原春季土壤湿度对长江中下游地区
初夏短期气候影响的数值模拟[J].成都信息工程大学学报,2017,(02):184.[doi:10.16836/j.cnki.jcuit.2017.02.012]
WANG Lin,WANG Lei,LI Zhe,et al.An Numerical Simulation on the Effect of Spring Soil Moisture in
Tibetan Plateau on Early Summer Short-term Climate over
Middle and Lower Reaches of Yangtze River[J].Journal of Chengdu University of Information Technology,2017,(06):184.[doi:10.16836/j.cnki.jcuit.2017.02.012]
[4]陈青青,汤志亚,杨 玲,等.四川气温和降水量特征分析[J].成都信息工程大学学报,2017,(02):200.[doi:10.16836/j.cnki.jcuit.2017.02.014]
CHEN Qing-qing,TANG Zhi-ya,YANG Ling,et al.Analysis of Air Temperature and Precipitation in Sichuan[J].Journal of Chengdu University of Information Technology,2017,(06):200.[doi:10.16836/j.cnki.jcuit.2017.02.014]
[5]张禄英,毛文书,庞 波.成都平原气候变化特征[J].成都信息工程大学学报,2020,35(02):179.[doi:10.16836/j.cnki.jcuit.2020.02.009]
ZHANG Lu-ying,MAO Wen-shu,PANG Bo.Characteristics of Climate Change in Chengdu Plain[J].Journal of Chengdu University of Information Technology,2020,35(06):179.[doi:10.16836/j.cnki.jcuit.2020.02.009]
[6]杨 越,文 军,陆宣承,等.近30年来若尔盖高寒湿地变化及其对区域气候变化的响应[J].成都信息工程大学学报,2021,36(01):73.[doi:10.16836/j.cnki.jcuit.2021.01.012]
YANG Yue,WEN Jun,LU Xuancheng,et al.The Change of the Zoige Alpine Wetland and its Responses to Climate Change in the Past 30 Years[J].Journal of Chengdu University of Information Technology,2021,36(06):73.[doi:10.16836/j.cnki.jcuit.2021.01.012]
[7]严 谨,赵 勇.中亚降水和气温的时空演变特征[J].成都信息工程大学学报,2022,37(05):592.[doi:10.16836/j.cnki.jcuit.2022.05.016]
YAN Jin,ZHAO Yong.Spatial Evolution Characteristics of Precipitation and Air Temperature over Central Asia[J].Journal of Chengdu University of Information Technology,2022,37(06):592.[doi:10.16836/j.cnki.jcuit.2022.05.016]
备注/Memo
收稿日期:2022-11-03
基金项目:四川省自然科学基金资助项目(2022NSFSC1074)