WANG Xu,WANG Peng,LYU Lintao.Application of Quantum Dynamics Framework to Lennard-Jones Cluster Structure Optimization[J].Journal of Chengdu University of Information Technology,2024,39(01):56-60.[doi:10.16836/j.cnki.jcuit.2024.01.010]
量子动力学框架在Lennard-Jones团簇结构优化中的应用
- Title:
- Application of Quantum Dynamics Framework to Lennard-Jones Cluster Structure Optimization
- 文章编号:
- 2096-1618(2024)01-0056-05
- 关键词:
- 量子动力学; 量子动力学框架; Lennard-Jones团簇; 全局优化; 优化算法
- Keywords:
- quantum dynamics; quantum dynamics framework; Lennard-Jones cluster; global optimization; optimization algorithm
- 分类号:
- TP311.5
- 文献标志码:
- A
- 摘要:
- Lennard-Jones团簇结构优化是在物理化学和材料科学领域经常遇到的优化问题,由于原子之间的相互作用具有高度的复杂性,因此常用来检验算法性能。量子动力学是一种具有完整数学框架且非常有效的理论模型,量子动力学框架(QDF)已经被证明在复杂问题中具有很强的竞争力。在不引入任何先验知识的基础下,使用QDF在Lennard-Jones团簇结构优化问题中进行求解,探讨QDF在具有高度复杂的解空间的团簇问题中的性能。将QDF与差分进化算法、骨架烟花算法进行对比,比较最低能量、能量分布和时间精度等。实验结果表明,在Lennard-Jones团簇结构优化问题中,可接受时间内QDF取得优于其他两种算法的最低能量。QDF是一种具有潜力的解决框架。
- Abstract:
- Lennard-Jones cluster structure optimization is a common optimization problem in the fields of physical chemistry and materials science. With the complex interactions between atoms, it serves as a benchmark for evaluating algorithm performance. Quantum Dynamics Framework(QDF)is highly competitive in complex problems. Without introducing any prior knowledge, QDF was used to solve the Lennard-Jones cluster structure optimization problem, exploring the performance of QDF in cluster problems with highly complex solution spaces. The QDF was compared with the differential evolution algorithm and the bare bones fireworks algorithm in terms of lowest energy, energy distribution, and time accuracy. The experimental results show that QDF achieves the lowest energy in the acceptable time than the other two algorithms in the Lennard-Jones cluster optimization problem. The research results indicate that QDF is a potential framework for the Lennard-Jones cluster structure optimization problem.
参考文献/References:
[1] 王鹏,陈雅琴,辛罡,等.优化算法的量子动力学探讨[J].西南民族大学学报,2021,47(3):288-269.
[2] 黄文奇,许如初.近世计算理论导引—NP难问题的背景、前景及其求解算法研究[M].北京:科学出版社,2006:18-70.
[3] 蔡文生,林翼,绍学广.团簇研究中的原子间势函数[J].化学进展,2005(4):588-596.
[4] 赖向京,许如初,黄文奇.Lennard-Jones团簇最低能量构型的预测[J].中国科学·化学,2011,41(7):1137-1144.
[5] Locatelli M,Schoen F.Efficient algorithms for large scale global optimization:Lennard-Jones clusters[J].Computational Optimization and Applications,2003,26:173-190.
[6] 倪海文.团簇基态结构预测的高效启发式算法[D].武汉:华中科技大学,2011.
[7] 喻恺亮.兰纳—琼斯团簇结构的模糊全局优化研究[D].杭州:浙江大学,2019.
[8] 赖向京.原子团簇结构预测的现实途径—高性能启发式算法[D].武汉:华中科技大学,2012.
[9] Wales D J,Scheraga H A.Global optimization of clusters,crystals,and biomolecules[J].Science,1999,285(5432):1368-1372.
[10] Daven D M,Tit N,Morris J R,et al.Structural optimization of Lennard-Jones clusters by a genetic algorithm[J].Chemical Physics Letters,1996,256(1-2):195-200.
[11] Song S,Gao S,Chen X,et al.AIMOES:Archive information assisted multi-objective evolutionary strategy for ab initio protein structure prediction[J].Knowledge-Based Systems,2018,146:58-72.
[12] Cheng L,Cai W,Shao X.A connectivity table for cluster similarity checking in the evolutionary optimization method[J].Chemical Physics Letters,2004,389(4-6):309-314.
[13] Zhou J,Li W,Zhu J.Particle swarm optimization computer simulation of Ni clusters[J].Transactions of Nonferrous Metals Society of China,2008,18(2):410-415.
[14] Mai G,Hong Y,Fu S,et al.Optimization of Lennard-Jones clusters by particle swarm optimization with quasi-physical strategy[J].Swarm and Evolutionary Computation,2020,57:100710.
[15] Shao X,Cheng L,Cai W.A dynamic lattice searching method for fast optimization of Lennard-Jones clusters[J].Journal of Computational Chemistry,2004,25(14):1693-1698.
[16] 吴夏,程文.动态格点搜索的改进算法用于团簇结构快速优化[J].计算机与应用化学,2014,31(8):917-920.
[17] Qin A K,Huang V L,Suganthan P N.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolutionary Computation,2008,13(2):398-417.
[18] Ahmad M F,Isa N A M,Lim W H,et al.Differential evolution: A recent review based on state-of-the-art works[J].Alexandria Engineering Journal,2022,61(5):3831-3872.
[19] 王鹏,王方.量子视角下的智能优化算法综述[J].电子科技大学学报,2022,51(1):2-15.
[20] Li J,Tan Y.The bare bones fireworks algorithm:A minimalist global optimizer[J].Applied Soft Computing,2018,62:454-462.
备注/Memo
收稿日期:2023-04-04