PDF下载 分享
[1]刘子琦,胡建成,牟谷芳.基于深度学习的中文临床实验筛选标准的分类[J].成都信息工程大学学报,2024,39(02):170-177.[doi:10.16836/j.cnki.jcuit.2024.02.007]
 LIU Ziqi,HU Jiancheng,MOU Gufang.Classification of Screening Criteria for Chinese Clinical Trials based on Deep Learning[J].Journal of Chengdu University of Information Technology,2024,39(02):170-177.[doi:10.16836/j.cnki.jcuit.2024.02.007]
点击复制

基于深度学习的中文临床实验筛选标准的分类

参考文献/References:

[1] 左圆圆,王媛媛,蒋珊珊, 等.数据可视化分析综述[J].微计算信息,2019,(1):82-83.
[2] 王勇,李帅.自然语言处理在医学文本挖掘中的应用[J].电子技术与软件工程,2019,(7):190-190.
[3] 宗辉,张泽宇,杨金璇,等.基于人工智能的中文临床试验筛选标准文本分类研究[J].生物医学工程杂志,2021,38(1):105-121.
[4] Hao T,Rusanov A,Boland MR,et al.Clustering clinical trials with similar eligibility criteria features[J].Journal of biomedical informatics,2014,52(C):112-120.
[5] Regev Y,Finkelstein M,Feldman R,et al.Rule-based extraction of experimental evidence in the biomedical domain:the KDD Cup 2002(task 1)[J].SIGKDD Explor.Newsl,2002,4(2):90-92.
[6] Luo Z,Stephen B,Weng C,et al.Semi-automatically inducing semantic classes of clinical research eligibility criteria using UMLS and hierarchical clustering[C].AMIA Annual Symposium Proceedings:American Medical Informatics Association,2010,2010:487.
[7] Luo Z, Yetisgen-Yildiz M, Weng C. Dynamic categorization of clinical research eligibility criteria by hierarchical clustering[J].Journal of biomedical informatics,2011,44(6):927-935.
[8] Marafino B J,Davies J M,Bardach N S,et al.N-gram support vector machines for scalable procedure and diagnosis classification,with applications to clinical free text data from the intensive care unit[J].Journal of the American Medical Informatics Association,2014,21(5): 871-875.
[9] Yi K,Beheshti J.A hidden Markov model-based text classification of medical documents[J].Journal of Information Science,2009,35(1):67-81.
[10] 王培,王亚文,卢苗苗.基于BERT模型的中医文本分类研究[J].电脑知识与技术,2021,17(27):13-20.
[11] 李启行,廖薇.基于注意力机制的生物医学文本分类模型[J].中国医学物理学杂志,2022,39(4):518-523.
[12] 钟桂凤,庞雄文,隋栋.基于Word2Vec和改进注意力机制AlexNet-2的文本分类方法[J].计算机科学, 2022, 49(4):288-293.
[13] Kim Y.Convolutional Neural Networks for Sentence Classification[J/OL].https://ui.adsabs.harvard.edu/abs/2014arXiv1408.5882K,2014, 08, 01/2022,12,11,2022.
[14] Tan M,Santos C,Xiang B,et al.Lstm-based deep learning models for non-factoid answer selection[J/OL].https://ui.adsabs.harvard.edu/abs/2015arXiv151104108T,2015,11,01/2022,12,11,2022.
[15] Zhou P,Shi W,Tian J,et al.Attention-based bidirectional long short-term memorynetworks for relation classification[C].Proceedings of the 54th annual meeting of the association for computational linguistics(volume 2:Short papers).2016:207-212.
[16] Cai L,Zhou S,Yan X,et al.A stacked BiLSTM neural network based on coattention mechanism for question answering[J].Computational intelligence and neuroscience,2019,2019:9543490.
[17] Vaswani A,Shazeer N,Parmar N,et al.Attention is all you need[J/OL].https://ui.adsabs.harvard.edu/abs/2017 arXiv170603762V,2017,01,01/2022,12,11,2022.
[18] Devlin J,Chang M W,Lee K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J/OL].https://ui.adsabs.harvard.edu/abs/2018arXiv181004805D,2018,10,01/2022,12,11,2022.
[19] Sun Y,Wang S,Li Y,et al.ERNIE:Enhanced Representation through Knowledge Integration[J/OL].https://ui.adsabs.harvard.edu/abs/2019arXiv190409223S,2019,05,01/2022,12,11,2022.
[20] 第五届中国健康信息处理会议(CHIP 2019).评测三:临床试 验筛选标准短文本分类[EB/OL].http://www.cips-chip.org.cn:8088/evaluation,2020,11,06/2022,12,11,2022.
[21] Wei J,Zou K.Eda:Easy data augmentation techniques for boosting performance on text classification tasks[J/OL].https://ui.adsabs.harvard.edu/abs/2019arXiv190111196W,2019,01,01/2022,12,11,2022.

备注/Memo

收稿日期:2022-12-28

更新日期/Last Update: 2024-04-30