HU Jingsong,LU Huiguo,SHI Jing,et al.Noise Reduction Process of Drone Wind Measurement Data based on Improved Kalman Filter[J].Journal of Chengdu University of Information Technology,2026,41(01):1-6.[doi:10.16836/j.cnki.jcuit.2026.01.001]
基于改进卡尔曼滤波算法的无人机测风数据降噪处理
- Title:
- Noise Reduction Process of Drone Wind Measurement Data based on Improved Kalman Filter
- 文章编号:
- 2096-1618(2026)01-0001-06
- Keywords:
- drone; wind measurement; data noise reduction; adaptive Kalman filter; least squares fitting
- 分类号:
- TN713
- 文献标志码:
- A
- 摘要:
- 无人机搭载微型气象探测系统可实现对大气边界层的直接测量,是细节化气象探测的一种常用方法,在应急气象预报、空气质量监测等方面都有较多应用。实际的探测过程中,由于无人机运动、观测环境变化的影响,采集的数据中可能包含一定的噪声,因此,采用改进的卡尔曼滤波算法对无人机测风数据进行降噪处理,并与传统卡尔曼滤波算法进行对比分析。结果表明,改进卡尔曼滤波算法可有效降低测风数据中的噪声信号,保留风速原始数据更多的特征信息,具有更高的滤波精度,在处理风向数据时有很好的抗野值能力,可有效减小野值引起的风向波动。
- Abstract:
- Unmanned aerial vehicles equipped with miniature meteorological observation systems can directly measure the atmospheric boundary layer, a commonly used equipment for detailed meteorological observation. It has many applications in emergency weather forecasting, air quality monitoring, etc. In the actual observation process, the collected data may contain certain noise due to the influence of the drone's movement and changes in the observation environment. Therefore, this paper uses an improved Kalman filtering algorithm to process the meteorological observation data collected by the drone and compares it with the traditional Kalman filtering algorithm. The results show that the improved Kalman filtering algorithm can effectively suppress the noise in the wind field data and handle outliers in the wind field data. Compared with the traditional Kalman filtering algorithm, it has higher filtering accuracy.
参考文献/References:
[1] 胡非,洪钟祥,雷孝恩.大气边界层和大气环境研究进展[J].大气科学,2003,27(4):712-728.
[2] Cook D E,Strong P A,Garrett S A,et al.A small unmanned aerial system(UAS)for coastal atmospheric research:preliminary results from New Zealand[J].Journal of the Royal Society of New Zealand,2013,43(2):108-115.
[3] Zhang Y,Dong T,Liu Y,et al.Design of Meteorological Element Detection Platform for Atmospheric Boundary Layer Based on UAV[J].International Journal ofAerospace Engineering,2017,2017:1-14.
[4] 姜明,史静,姚巍,等.多旋翼微型无人机气象探测适用性分析[J].气象科技,2018,46(3):479-484.
[5] Barbieri L,Kral S T,Bailey S C,et al.Intercomparison of Small Unmanned Aircraft System(sUAS)Measurements for Atmospheric Science during the LAPSE-RATE Campaign[J].SENSORS,2019,19(9):2179.
[6] 徐家平,赵天良,陈燕,等.基于旋翼无人机的大气边界层环境气象垂直观测及订正方法的研究[J].气象与环境学报,2022,38(3):101-111.
[7] 侯天浩,行鸿彦,刘洋.多旋翼无人机在气象探测中的现状与展望[J].电子测量与仪器学报,2019,31(10):7-15.
[8] 郄秀书,吕达仁,陈洪滨,等.大气探测高技术及应用研究进展[J].大气科学,2008,32(4):867-881.
[9] 胡峰,孙国基.Kalman滤波的抗野值修正[J].自动化学报,1999,25(5):692-696.
[10] 刘伟,赵伟,刘建业.抗野值自适应Kalman滤波在无人机测风数据处理中的应用[J].弹箭与制导学报,2011,31(3):237-240.
[11] 曼世超,卢会国,蒋娟萍,等.无迹卡尔曼滤波在电线积冰观测数据处理中的应用[J].成都信息工程大学学报,2017,32(4):381-385.
[12] 张怡,廉晶晶,黄文刚.抗野值性能的无迹卡尔曼滤波算法的研究[J].计算机工程与应用,2012,48(33):153-156,216.
[13] 朱红运,庞建国,先治文.基于卡尔曼和最小二乘的抗野值降噪方法研究[J].计算机仿真,2022,39(7):366-370.
[14] 高宁,周跃庆,杨晔,等.抗野值自适应卡尔曼滤波方法的研究[J].中国惯性技术学报,2003,11(3):25-28.
[15] 周伟静,沈怀荣.抗野值抑制发散滤波算法在无人机测风数据处理中的应用[J].装备指挥技术学院学报,2009,20(5):122-126.
[16] 刘敦训,金伟福.卡尔曼滤波方法在风的短期预报中的应用[J].山东气象,1998,18(1):29-32.
相似文献/References:
[1]周 咏,万 垚.基于无人机的监控系统设计[J].成都信息工程大学学报,2021,36(02):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
ZHOU Yong,WAN Yao.Design of Surveillance System based on UAV[J].Journal of Chengdu University of Information Technology,2021,36(01):159.[doi:10.16836/j.cnki.jcuit.2021.02.006]
[2]凌荣巧,卢会国,蒋娟萍,等.基于气象无人机观测的测风优化研究[J].成都信息工程大学学报,2023,38(03):271.[doi:10.16836/j.cnki.jcuit.2023.03.004]
LING Rongqiao,LU Huiguo,JIANG Juanping,et al.Optimization Study of Wind Measurement based on Meteorological Drone Observation[J].Journal of Chengdu University of Information Technology,2023,38(01):271.[doi:10.16836/j.cnki.jcuit.2023.03.004]
[3]王 会,王永前,李剑锋,等.基于无人机多光谱数据的三峡库区支流叶绿素a浓度估算——以小江为例[J].成都信息工程大学学报,2024,39(02):233.[doi:10.16836/j.cnki.jcuit.2024.02.015]
WANG Hui,WANG Yongqian,LI Jianfeng,et al.Estimation of Chlorophyll a Concentration in Three Gorges Reservoir Branch based on UAV Multispectral Data——A Case Study of Xiaojiang River[J].Journal of Chengdu University of Information Technology,2024,39(01):233.[doi:10.16836/j.cnki.jcuit.2024.02.015]
[4]范思睿,王维佳,王博为,等.2022年2月青藏高原东侧大型无人机人工增雪试验分析[J].成都信息工程大学学报,2025,40(02):220.[doi:10.16836/j.cnki.jcuit.2025.02.013]
FAN Sirui,WANG Weijia,WANG Bowei,et al.Analysis of Artificial Snow Enhancement Experiment of Large UAV on the East Side of Tibet Plateau in February 2022[J].Journal of Chengdu University of Information Technology,2025,40(01):220.[doi:10.16836/j.cnki.jcuit.2025.02.013]
[5]付文巧,徐梓欣,王志红,等.基于EfficientNet的无人机图传信号分类识别研究[J].成都信息工程大学学报,2026,41(01):32.[doi:10.16836/j.cnki.jcuit.2026.01.005]
FU Wenqiao,XU Zixin,WANG Zhihong,et al.Research on Classification and Recognition of UAV Image Transmission Signals based on EfficientNet[J].Journal of Chengdu University of Information Technology,2026,41(01):32.[doi:10.16836/j.cnki.jcuit.2026.01.005]
备注/Memo
收稿日期:2024-06-17
基金项目:国家自然科学基金资助项目(42075129)
通信作者:卢会国.Email:luhuiguo@cuit.edu.cn
