JIN Xiu,LI Shao-wen,QI Hai-jun.Quantitative Analysis of Sugar Model of Sorghum Stalk Squeezed Juice using MEMS-FTIR[J].Journal of Chengdu University of Information Technology,2016,(04):367-371.
基于微型傅立叶光谱仪的高粱秆榨汁液模型糖分检测
- Title:
- Quantitative Analysis of Sugar Model of Sorghum Stalk Squeezed Juice using MEMS-FTIR
- 文章编号:
- 2096-1618(2016)04-0367-05
- Keywords:
- spectrum; crop information; MEMS-FTIR; NIR; quantitative analysis
- 分类号:
- TP391.44
- 文献标志码:
- A
- 摘要:
- 利用微型傅立叶光谱仪对高粱秆榨汁液化学模型进行糖分的定量分析,发现间隔-偏最小二乘算法的回归模型具有较高的拟合度。实验利用了中红外光谱仪器和高效液相色谱法检测出高粱杆榨汁液的糖分类型和含量,再根据其糖分特征制作了3种混合糖溶液模型。基于微型傅立叶光谱仪的1150 nm~2050 nm近红外线波段光谱曲线,比较了偏最小二乘法和间隔-偏最小二乘算法定量回归算法,结果发现对于多组分糖溶液间隔-偏最小二乘算法具有较好的拟合效果,其中蔗糖、果糖、葡萄糖回归系数分别为0.8583、0.7820和0.8625。
- Abstract:
- The article makes a quantitative analysis of the sugar of chemical model of sorghum stalk squeezed juice by using MEMS-FTIR, finds that the results using the iPLS regression model with high fitness degree. While analyzing the sugars content of sorghum stalk by using MIR and HPLC measurement, experiment produced three kinds of mixed sugar solution model based on the content of sugar. Using the MEMS-FT-NIR from 1150 nm to 2050 nm band of NIR spectrum, compared the result with the PLS model and the iPLS model, and found that the iPLS model of sugar solution is more efficient, the regression coefficient of sucrose, fructose, and glucose is 0.8583,0.7820 and 0.8625 respectively.
参考文献/References:
[1] Kre H.Osmotically driven pipe flows and their relation to sugar transport in plants[J].Journal of Fluid Mechanics,2008,636(4):371-396.
[2] Temma T,Hanamatsu K,Shinoki F.Development of a compact NIR sugar-measuring instrument[J].Technical Report of Ieice Lqe,2001,101:41-45.
[3] Heppner S,Thielecke K,Buchholz K,et al.Potential applications of NIR spectrometry in the sugar industry[J].Zuckerindustrie,2000,125(5):325-330.
[4] Mosheky Z A,Melling P J,Thomson M A.In Situ Real-Time Monitoring of a Fermentation Reaction Using a Fiber-Optic FT-IR Probe[J].Spectroscopy,2001,16(6):15-20.
[5] Zhou J,Yao L,Li Y,et al.Floral classification of honey using liquid chromatography-diode array detection-tandem mass spectrometry and chemometric analysis[J].Food Chemistry,2014,145(4):941-949.
[6] 牛晓颖,应义斌,于海燕,等.红外光谱技术在饮料酒鉴别中的应用进展[J].光谱学与光谱分析,2008,28(4):804-807.
[7] Meng Y N,Zhang R,Shi Q,et al.Determination of Three Kinds of Sugar Content in Sweet Sorghum Stalk by HPLC under Different Storage Method[J].Chinese Agricultural Science Bulletin,2010,(1).
[8] Wang S.Infrared Spectroscopy for Food Quality Analysis and Control[J].Trends in Food Science & Technology,2010,21:52.
[9] Giangiacomo R.Study of water-sugar interactions at increasing sugar concentration by NIR spectroscopy[J].FoodChemistry,2006,96(3):371-379.
[10] Murray S C,Sharma A,Rooney W L,et al.Genetic Improvement of Sorghum as a Biofuel Feedstock: I.QTL for Stem Sugar and Grain Nonstructural Carbohydrates[J].Crop Science,2008,48(6):2165-2179.
[11] Atsushi Hashimoto,Takaharu Kameoka.Applications of Infrared Spectroscopy to Biochemical,Food,and Agricultural Processes[J].Applied Spectroscopy Reviews,2008,43(5):416-451.
[12] O Sergio et al.Sorghum as a Multifunctional Crop for the Production of Fuel Ethanol:Current Status and Future Trends[J].Bioetha,2012,(2):51-74.
[13] Khalil D,Sabry Y,Omran H,et al.Characterization of MEMS FTIR Spectrometer[J].Proceedings of SPIE-The International Society for Optical Engineering,2011.
[14] Bjorn-Helge Mevik,Ron Wehrens,Kristian Hovde Liland.Partial Least Squares and Principal Component regression[M].2011.
[15] Norgaard L,Saudland A,Wagner J,et al.Interval Partial Least-Squares Regression(iPLS):A Comparative Chemometric Study with an Example from Near-InfraredSpectroscopy [J]. Applied Spectroscopy,2000,54(3):413-419.
备注/Memo
收稿日期:2016-04-15 基金项目:农业部948计划资助项目(2015-Z44)