DU Meng-jiao,CHEN Quan-liang,LIN Ren-ping,et al.Argo Profile Data Assimilation in CAS-ESM-C:Benefits for Improving the Simulations of Upper Ocean Temperature[J].Journal of Chengdu University of Information Technology,2017,(03):289-296.[doi:10.16836/j.cnki.jcuit.2017.03.010 ]
同化Argo海洋廓线观测对CAS-ESM-C的 上层海洋温度模拟的改进
- Title:
- Argo Profile Data Assimilation in CAS-ESM-C:Benefits for Improving the Simulations of Upper Ocean Temperature
- 文章编号:
- 2096-1618(2017)03-0289-08
- 关键词:
- 海洋资料同化; Argo海洋廓线观测; 海洋温度模拟; CAS-ESM-C
- Keywords:
- ocean data assimilation; argo temperature and salinity profile; ocean temperature simulation
- 分类号:
- P456.7
- 文献标志码:
- A
- 摘要:
- 基于中国科学院地球系统模式气候分量系统(CAS-ESM-C)最新发展的海洋资料同化系统,分别同化Argo( array for real-time geostrophic oceanography,实时地转海洋学观测阵)海洋温盐廓线观测和SST(sea surface temperature,海表温度)观测资料,并与实际观测数据及模式自由积分结果对比,研究同化海洋廓线对海气耦合模式海温模拟的改进。分析结果表明,同化海洋廓线和SST观测均能减小模拟的SST偏差,有效改进热带太平洋暖池、冷舌结构的模拟。但对于海洋上层200~400 m温度而言,同化SST的改进效果微弱,同化海洋廓线观测能显著改进模式对其模拟的效果,使得同化后的1000 m深度以上海温的均方根误差(root mean square error,RMSE)平均减小至1 ℃,减小幅度超过60%; 同时对于热带太平洋上层海温的垂直分布及温跃层结构模拟改进显著,西太平洋暖池区200~400 m海温模拟偏差减小约6 ℃,减小幅度超过80%。
- Abstract:
- In this study, the Argo profile and observed sea surface temperature are assimilated into CAS-ESM-C using the newly developed ocean data assimilation system. The simulation of assimilation experiments are evaluated by comparing with the observations and model free integration. The results are the bias of SST in the assimilation experiments can be reduced compared to model free integration, and the simulation of warm pool and cold tongue structure in the tropical Pacific also be improved. For the simulation of upper ocean temperature in 200-400 m, the assimilation SST experiment have little improvement, but in the assimilation Argo profile experiment can be significantly improved, making the RMSE of the upper ocean(above 1000 m)temperature mean decrease to 1℃, reduced more than 60%. In the assimilation Argo profile experiment, the simulation of ocean temperature distribution and thermocline structure is improved obviously in the tropical Pacific, the deviation was reduced by nearly 6 ℃(more than 80%)in the 200-400 m of Western Pacific Warm Pool Area.
参考文献/References:
[1] 孙泓川,周广庆,曾庆存,等.IAP第四代大气环流模式的气候系统模式模拟性能评估[J].大气科学,2012,36(2):215-233.
[2] Zheng Y,Lin J,Toshiaki S.The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs:Upper ocean heat budget and feedback analysis[J].Journal of Geophysical Research Oceans,2012,117(C5):78-91.
[3] Hirota N,Takayabu Y N,Watanabe M,et al.Precipitation Reproducibility over Tropical Oceans and Its Relationship to the Double ITCZ Problem in CMIP3 and MIROC5 Climate Models[J].Journal of Climate,2011,24(18):4859-4873.
[4] Tonghua S U,Feng X,Sun H,et al.The El Ni ?倞
o-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences[J].海洋学报(英文版),2015,34(1):55-65.
[5] Tonghua S U,Feng X,He Z. Simulating the Intraseasonal Variation of the East Asian Summer Monsoon by IAP AGCM4.0[J].大气科学进展,2014,31(3):570-580.
[6] Ji M,Behringer D W,Leetmaa A.An Improved Coupled Model for ENSO Prediction and Implications for Ocean Initialization.Part II:The CoupledModel[J].Monthly Weather Review,1998,126(4):1022.
[7] Carton J A,Giese B S.A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation(SODA)[J].Monthly Weather Review,2010,136(8):2999.
[8] Behringer D W,Xue Y.Evaluation of the Global Ocean Data Assimilation System at NCEP:The Pacific Ocean[C].Oceans.2004.
[9] Karspeck A R,Yeager S,Danabasoglu G,et al.An Ensemble Adjustment Kalman Filter for the CCSM4 Ocean Component[J].Journal of Climate,2013,26(19):7392-7413.
[10] Zhang S,Harrison M J,Rosati A,et al.System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies[J].Monthly Weather Review,2007,135(10):3541-3564.
[11] 路泽廷,朱江,符伟伟,等.全球海洋资料同化系统ZFL_GODAS的研制和初步评估试验[J].气候与环境研究,2014,19(3):321-331.
[12] Xiao,DONG,Renping Lin,et al.Evaluation of Ocean Data Assimilation in CAS-ESM-C:Constraining the SST Field [J].大气科学进展,2016,33(7):795-807.
[13] 孙朝辉,刘增宏,朱伯康,等.全球海洋中Argo剖面浮标运行状况分析[J].海洋技术学报,2006,25(3):127-134.
[14] 张人禾,刘益民,殷永红,等.利用ARGO资料改进海洋资料同化和海洋模式中的物理过程[J].气象学报,2004,62(5):613-622.
[15] 张人禾,朱江,许建平,等.Argo大洋观测资料的同化及其在短期气候预测和海洋分析中的应用[J].大气科学,2013,37(2):411-424.
[16] Mignac D,Tanajura C A S,Santana A N,et al.Argo data assimilation into HYCOM with an EnOI method in the Atlantic Ocean[J].Ocean Science,2015,11(1):195-213.
[17] Balmaseda M,Anderson D.Impact of initialization strategies and observations on seasonal forecastskill[J].Geophysical Research Letters,2009,36(1):737-739.
[18] Chang Y S,Zhang S,Rosati A,et al.An assessment of oceanic variability for 1960-2010 from the GFDL ensemble coupled data assimilation[J].Climate Dynamics,2012,40(3-4):775-803.
[19] Zhang S,Rosati A.An Inflated Ensemble Filter for Ocean Data Assimilation with a Biased Coupled GCM[J].Monthly Weather Review,2010,138(10):3905-3931.
[20] Evensen G.The Ensemble Kalman Filter:theoretical formulation and practical implementation[J].Ocean Dynamics,2003,53(4):343-367.
[21] Oke P R,Brassington G B,Griffin D A,et al.The Bluelink ocean data assimilation system(BODAS).Ocean Model[J].Ocean Modelling,2008,21(1-2):46-70.
[22] Gouretski V,Reseghetti F.On depth and temperature biases in bathythermograph data:Development of a new correction scheme based on analysis of a global ocean database[J].Deep Sea Research Part I Oceanographic Research Papers,2010,57(6):812-833.
[23] Levitus S,Antonov J I,Boyer T P,et al.Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems[J].Geophysical Research Letters,2009,36(7):157-163.
[24] Kosaka Y,Xie S P.Recent global-warming hiatus tied to equatorial Pacific surface cooling[J].Nature,2013,501(7467):403-7.
[25] Trenberth K E,Caron J M,Stepaniak D P,et al.Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures[J]. Journal of Geophysical Research Atmospheres,2002,107(7):5-1.
备注/Memo
收稿日期:2017-03-01 基金项目:国家自然科学基金资助项目(41576019)