TANG Xiao-wen,LI Feng,LIU Gao-ping.Tornadogenesis and the Structural Evolution of Associated Parent Storms[J].Journal of Chengdu University of Information Technology,2018,(06):599-605.[doi:10.16836/j.cnki.jcuit.2018.06.001]
龙卷形成过程及母体风暴结构与演变研究进展
- Title:
- Tornadogenesis and the Structural Evolution of Associated Parent Storms
- 文章编号:
- 2096-1618(2018)06-0599-07
- Keywords:
- tornadogenesis; supercell; convective-scale structure; review
- 分类号:
- P445+.1
- 文献标志码:
- A
- 摘要:
- 系统地回顾了近10年来国内外针对龙卷形成过程,以及相应母体风暴结构和演变特征的研究成果。从龙卷涡旋垂直方向上的涡度演变、龙卷低层涡旋的产生方式、以及与龙卷形成相关的母体风暴对流尺度结构的极化雷达特征三个方面,重点关注了超级单体风暴中龙卷形成研究的最新进展。通过回顾可以发现,目前龙卷形成研究的最前沿围绕着超级单体内部对流尺度结构的精细化特征和机理而进行,这为中国即将开展的龙卷观测和业务预报试验提供了重要的参考。
- Abstract:
- This paper reviews recent researches on tornadogenesis and the structural evolution of associated parent storms. Important topics including vertical development of tornado vortex structure, the origin of tornado vortex structure at the lower levels, and the polarimetric characteristics of convective-scale structure in parent storms are discussed in the context of supercell storms. It is shown that recent researches have been focusing on the detailed structure and evolution of convective-scale structures pertains to tornadogenesis in supercell storms. This review points to a possible direction for the future development of research and operation on tornadogenesis in China.
参考文献/References:
[1] 范雯杰,俞小鼎.中国龙卷的时空变化特征[J].气象,2015,41:793-805.
[2] 周后福,刁秀广,夏文梅,等.江淮地区龙卷超级单体风暴及其环境参数特征[J].气象学报,2014,72:306-317.
[3] 王秀明,俞小鼎,周小刚.中国东北龙卷研究:环境特征分析[J].气象学报,2015,73:425-441.
[4] 郑媛媛,张备,王啸华,等.台风龙卷的环境背景和雷达回波结构分析[J].气象,2015,41:942-952.
[5] Markowski P,Y Richardson.Mesoscale Meteorology in Midlatitudes[M].2010:401-407.
[6] Edwards R,J G LaDue,J T Ferree,et al.Tornado Intensity Estimation:Past,Present,and Future[J].Bull.Am.Meteorol.Soc.,2013,94:641-653.
[7] Zhao K,Coauthors.Doppler Radar Analysis of a Tornadic Miniature Supercell during the Landfall of Typhoon Mujigae(2015)in South China[J].Bull.Am.Meteorol.Soc.,2017,98:1821-1831.
[8] Bai L,Coauthors.An Integrated Damage,Visual,and Radar Analysis of the 2015 Foshan,Guangdong,EF3 Tornado in China Produced by the Landfalling Typhoon Mujigae(2015)[J].Bull.Am.Meteorol.Soc.,2017,98:2619-2640.
[9] Meng Z,Coauthors.The Deadliest Tornado(EF4)in the Past 40 Years in China[J].Weather Forecast.,2018,33:693-713.
[10] Burgess D W,L R Lemon,R A Brown.Tornado characteristics revealed by Doppler radar[J].Geophys.Res.Lett.,1975,2:183-184.
[11] Brown R a,L R Lemon,D W Burgess.Tornado Detection by Pulsed Doppler Radar[J].Mon.Weather Rev.1978,106,29-38.
[12] Trapp R J,R Davies-Jones.Tornadogenesis with and without a Dynamic Pipe Effect[J].J.Atmos.Sci.,1997,54:113-133.
[13] Trapp R J,E D Mitchell,G A Tipton,et al.Descending and Nondescending Tornadic Vortex Signatures Detected by WSR-88Ds[J].Weather Forecast.,1999,14:625-639.
[14] Pazmany A L,J B Mead,H B Bluestein,et al.A Mobile Rapid-Scanning X-band Polarimetric(RaXPol)Doppler Radar System[J].J.Atmos.Ocean.Technol.,2013,30:1398-1413.
[15] Bluestein H B,M M French,I PopStefanija.et al.A Mobile,Phased-Array Doppler Radar For The Study of Severe Convective Storms[J].Bull.Am.Meteorol.Soc.,2010,91:579-600.
[16] French M M,H B Bluestein,I PopStefanija,et al.Reexamining the Vertical Development of Tornadic Vortex Signatures in Supercells[J].Mon.Weather Rev.,2013.
[17] Houser J L,H B Bluestein,J C Snyder,et al.Rapid-Scan,Polarimetric,Doppler Radar Observations of Tornadogenesis and Tornado Dissipation in a Tornadic Supercell:The“El Reno,Oklahoma”Storm of 24 May 2011[J].Mon.Weather Rev.,2015,143:2685-2710.
[18] Markowski P M,An Idealized Numerical Simulation Investigation of the Effects of Surface Drag on the Development of Near-Surface Vertical Vorticity in Supercell Thunderstorms[J].J.Atmos.Sci.,2016,73:4349-4385.
[19] Davies Jones R P,H E Brooks.Mesocyclogenesis from a theoretical perspective[J].The Tornado: Its Structure,Dynamics,Prediction,and Hazards,1993,79.
[20] Markowski P,Coauthors.The Pretornadic Phase of the Goshen County,Wyoming,Supercell of 5 June 2009 Intercepted by VORTEX2.Part II: Intensification of Low-Level Rotation[J].Mon.Weather Rev.,2012,140:2916-2938.
[21] Markowski P M,Y P Richardson.The Influence of Environmental Low-Level Shear and Cold Pools on Tornadogenesis: Insights from Idealized Simulations[J].J.Atmos.Sci.,2014,71:243-275.
[22] Grzych M L,B D Lee,C A Finley.Thermodynamic Analysis of Supercell Rear-Flank Downdrafts from Project ANSWERS[J].Mon.Weather Rev.,2007,135:240-246.
[23] Lee B D,C A Finley,C D Karstens.The Bowdle,South Dakota,Cyclic Tornadic Supercell of 22 May 2010:Surface Analysis of Rear-Flank Downdraft Evolution and Multiple Internal Surges[J].Mon.Weather Rev.,2012,140:3419-3441.
[24] Skinner P S,C C Weiss,M M French,et al.VORTEX2 Observations of a Low-Level Mesocyclone with Multiple Internal Rear-Flank Downdraft Momentum Surges in the 18 May 2010 Dumas, Texas, Supercell[J].Mon.Weather Rev.,2014,142:2935-2960.
[25] Skinner P S,C C Weiss,L J Wicker,et al.Forcing Mechanisms for an Internal Rear-Flank Downdraft Momentum Surge in the 18 May 2010 Dumas,Texas,Supercell[J].Mon.Weather Rev.,2015,143:4305-4330.
[26] Van Den Broeke,M S.Polarimetric Radar Metrics Related to Tornado Life Cycles and Intensity in Supercell Storms[J].Mon. Weather Rev.,2017,145:3671-3686.
[27] Bodine D J,R D Palmer,G Zhang.Dual-Wavelength Polarimetric Radar Analyses of Tornadic Debris Signatures[J].J.Appl.Meteorol.Climatol.2014,53:242-261.
[28] Kumjian M R,A V Ryzhkov.Polarimetric signatures in supercell thunderstorms[J].J.Appl.Meteorol.Climatol.,2008,47:1940-1961.
[29] Palmer R D,Coauthors.Observations of the 10 May 2010 Tornado Outbreak Using OU-PRIME: Potential for New Science with High-Resolution Polarimetric Radar[J].Bull.Am.Meteorol.Soc.,2011,92:871-891.
[30] Crowe C,C Schultz,M Kumjian,et al.Use of dual-polarization signatures in diagnosing tornadic potential[J].Electron.J.Oper.Meteorol.,2012,13:57-78.
[31] Kumjian M R,A V Ryzhkov.The impact of size sorting on the polarimetric radar variables[J].J.Atmos.Sci.,2012.
[32] Dawson D T,E R Mansell,Y Jung,et al.Low-Level ZDR Signatures in Supercell Forward Flanks:The Role of Size Sorting and Melting of Hail[J].J.Atmos.Sci.,2014,71:276-299.
[33] Dawson D T,E R Mansell,M R Kumjian.Does Wind Shear Cause Hydrometeor Size Sorting?[J].J.Atmos.Sci.,2015,72:340-348.
[34] KumjianM R,A P Khain,N Benmoshe,et,al.The anatomy and physics of ZDR columns:Investigating a polarimetric radar signature with a spectral bin microphysical model[J].J.Appl.Meteorol.Climatol.,2014,53:1820-1843.
[35] van den Broeke,M S.Polarimetric variability of classic supercell storms as a function of environment[J].J.Appl.Meteorol.Climatol.,2016,55:1907-1925.
[36] Markowski P,Y Richardson,E Rasmussen et al.Vortex Lines within Low-Level Mesocyclones Obtained from Pseudo-Dual-Doppler Radar Observations[J].Mon.Weather Rev.,2008,136:3513-3535.
相似文献/References:
[1]高志博,周筠珺,尹舒悦,等.成都地区一次超级单体风暴的观测分析与数值模拟[J].成都信息工程大学学报,2019,(04):392.[doi:10.16836/j.cnki.jcuit.2019.04.012]
GAO Zhibo,ZHOU Yunjun,YIN Shuyue,et al.A Mesoscale Numerical Simulation of a Supercell Storm in Chengdu Area[J].Journal of Chengdu University of Information Technology,2019,(06):392.[doi:10.16836/j.cnki.jcuit.2019.04.012]
备注/Memo
收稿日期:2018-10-26 基金项目:国家重点研发计划资助项目(2018YFC1506100、2018Y FC1506103)