ZHANG Yuhan,FU Ying,YANG Zhipeng,et al.Low Rank Decomposition for MRI Denoising based on Noise-free Image Patch Prior[J].Journal of Chengdu University of Information Technology,2019,(03):246-250.[doi:10.16836/j.cnki.jcuit.2019.03.007]
基于无噪图像块先验的MRI低秩分解去噪算法研究
- Title:
- Low Rank Decomposition for MRI Denoising based on Noise-free Image Patch Prior
- 文章编号:
- 2096-1618(2019)03-0246-05
- Keywords:
- MRI denoising; Gaussian mixture model; image patch prior; low-rank matrix decomposition; Rician noise
- 分类号:
- TP391
- 文献标志码:
- A
- 摘要:
- 针对核磁共振图像中存在莱斯噪声的现象,提出一种基于无噪图像块先验的MRI低秩分解去噪算法。该算法首先利用高斯混合模型学习无噪核磁共振图像块的先验; 然后将带有无噪核磁共振图像块先验的高斯混合模型用于噪声核磁共振图像块聚类,并将聚类后每个高斯类中的核磁共振图像块叠在一起构成低秩矩阵并对其进行低秩分解操作来达到除去噪声的目的; 最后根据去噪后的数据重建清晰核磁共振图像。实验结果表明相较于各项异性滤波,非局部均值滤波和权重核范数最小化复原算法,文中方法在PSNR值、SSIM值和视觉上有较大提升,在去除噪声的同时,能较好地保留图像本身的纹理细节信息。
- Abstract:
- In this paper, a low-rank matrix decomposition MRI denoising algorithm based on noise free image patch prior is proposed. Firstly, the algorithm learns the parameters of the Gaussian mixture model(GMM)from the noise-free MR image patch. The learned GMM with noise-free MR image patches priors is then used to guide the clustering of noisy MR image patches. Secondly, the image patch of noisy images in same Gaussian class are vectorized as a low-rank matrix. By a low- rank matrix decomposition process, the correspond denoised image data can be obtained. Thirdly, the clean image can be reconstructed from these denoised image data. Lastly, compared with the non-local means(NLM), the unbiased non-local means(UNLM),the anisotropic diffusion filtering(ADF)and the weighted nuclear norm minimization with variance stabilization transformation(WNNM-VST), our proposed method can effectively remove the Rician noise in the magnetic resonance image and has a great improvement in numerical results and visual effects.
参考文献/References:
[1] More S,V V Hanchate.A Survey on Magnetic Resonance Image Denoising Methods[J].International Research Journal of Engineering and Technology,2016,3(5):7.
[2] Mcveigh E R,Henkelman R M,Bronskill M J.Noise and filtration in magnetic resonance imaging[J].Medical Physics,1985,12(5):586.
[3] Gerig G,Kübler O,Kikinis R,et al.Nonlinear anisotropic filtering of MRI data[J].IEEE transactions on medical imaging,1992,11(2):221-32.
[4] Buades A,Coll B,Morel J M.A Non-Local Algorithm for Image Denoising[C].2005,2:60-65.
[5] Manjón J V,Carbonellcaballero J,Lull J J,et al.MRI denoising using non-local means[J].Medical Image Analysis,2008,12(4):514.
[6] 黄静静.基于图像块先验和Bootstrap的图像去噪算法研究[D].西安:西安电子科技大学,2015.
[7] Yu G,Sapiro G,Mallat S.Solving Inverse Problems With Piecewise Linear Estimators:From Gaussian Mixture Models to Structured Sparsity[J].IEEE Transactions on Image
Processing,2012,21(5):2481.
[8] Zoran D,Weiss Y.From learning models of natural image patches to whole image restoration[C].2011:479-486.
[9] 王圳萍.基于低秩矩阵恢复的图像去噪算法研究[D].成都:西南交通大学,2015.
[10] Liu X,Ma J,Zhang X,et al.Image denoising of low-rank matrix recovery via joint Frobenius norm[J].Journal of Image & Graphics,2014.
[11] Chen F,Zhang L,Yu H.External Patch Prior Guided Internal Clustering for Image Denoising[C].2015:603-611.
[12] Gu S,Zhang L,Zuo W,et al.Weighted Nuclear Norm Minimization with Application to Image Denoising[C].2014:2862-2869.
[13] Nowak R D.Wavelet-based Rician noise removal for magnetic resonance imaging[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing
Society,1999,8(10):1408.
[14] Dempster A P,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the royal statistical society.Series B
(methodological),1977,39:1-38.
[15] Cocosco C A,Kollokian V,Kwan K S,et al.BrainWeb:Online Interface to a 3D MRI Simulated Brain Database[J].Neuroimage,1997,5:425.
[16] Foi A.Noise estimation and removal in MR imaging:The variance-stabilization approach[C].2011:1809-1814.
[17] Eksioglu E M.Decoupled Algorithm for MRI Reconstruction Using Nonlocal Block Matching Model:BM3D-MRI[J].Journal of Mathematical Imaging & Vision, 2016,56(3):430-
440.
[18] Rajan J,Poot D,Juntu J,et al.Noise measurement from magnitude MRI using local estimates of variance and skewness[J].Physics in Medicine & Biology,2010,55(16):441-
449.
备注/Memo
收稿日期:2019-01-03 基金项目:四川省教育厅资助项目(2017RZ0012)