YU Jie,XIA Chaoyu,DU Jiang.Imaging Research of Dynamic Threshold Greedy Algorithm based on CS-TWR[J].Journal of Chengdu University of Information Technology,2019,(05):462-465.[doi:10.16836/j.cnki.jcuit.2019.05.003]
基于CS-TWR的动态阈值贪婪算法成像研究
- Title:
- Imaging Research of Dynamic Threshold Greedy Algorithm based on CS-TWR
- 文章编号:
- 2096-1618(2019)05-0462-04
- Keywords:
- compressed sensing; over-complete dictionary; basis pursuit; stagewise weak orthogonal; dynamic threshold.
- 分类号:
- TN957.52
- 文献标志码:
- A
- 摘要:
- 针对穿墙雷达(TWR)成像过程中分段弱正交匹配追踪(SWOMP)成像模糊等问题,提出了一种动态阈值弱正交匹配追踪算法(DWOMP),可以显著提高压缩感知穿墙雷达(CS-TWR)二维雷达像的性能指标。首先利用Chirp信号雷达回波数据建立TWR压缩感知仿真模型与构造过完备字典; 然后给出了DWOMP算法实现流程,并进行了DWOMP算法的计算机仿真实验; 最后将DWOMP算法与BP算法、 SWOMP算法通过仿真实验比较。仿真结果表明,在相同实验条件下,DWOMP算法成像用时约为BP算法的3/5,成像分辨率优于SWOMP算法。
- Abstract:
- Aiming at the problem that the segmentation weak orthogonal matching pursuit(SWOMP)imaging accuracy is not high during the through-wall radar(TWR)imaging process, a dynamic threshold weak orthogonal matching pursuit algorithm(DWOMP)is proposed, which can significantly improve the 2 Dradar image performance index of CS-TWR. Firstly, the TWR compressed sensing simulation modelis built and the over-complete dictionary are established by using Chirp signal radar echo data. Then the DWOMP algorithm implementation flow is given, and the computer simulation experiment of DWOMP algorithm is carried out. The DWOMP,BP and SWONP algorithms are compared through simulation experiment eventually.The simulation results show that under the same experimental conditions, the imaging time of DWOMP algorithm is about 3/5 of BP algorithm, and the imaging resolution of that is better than SWOMP algorithm.
参考文献/References:
[1] Jin T.Auto-focusing compressed sensing algorithm for through-the-wall imaging[C].Cie International Conference on Radar,2017:1-4.
[2] Ahmad Hoorfar,Wenji Zhang.Advances in real time and sparse reconstructed radar imaging through multilayered walls[C].International Conference on Electromagnetics in
Advanced Applications,2017:952-955.
[3] Alkhodary M T,Abozaid S H,Muqaibel A H.Experimental evaluation of UWB indoor radar imaging[C].IEEE Asia-Pacific Conference on Applied Electromagnetics,2016:339-343.
[4] Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[5] Fang H,Yang H.A new compressed sensing-based matching pursuit algorithm for image reconstruction[C].International Congress on Image and Signal Processing,2013:338-342.
[6] 孙晨.压缩感知贪婪算法综述[A].2017中国地球科学联合学术年会论文集(二十五)——专题50:地震波传播与成像,2017:4.
[7] Liu J,Han C Z,Yao X H.Compressed sensing based track before detect algorithm for airborne radars[J].Progress In Electromagnetics Research,2013,138:433-451.
[8] 任百玲,李世勇,孙厚军.基于ROMP的压缩感知算法在雷达成像中的应用[J].微波学报,2012,28(S2):447-450.
[9] He S,Pang L.SAR tomography imaging based on Generalized Orthogonal Matching Pursuit—The case study of pangu 7 star hotel in Beijing[C].IEEE International Geoscience
and Remote Sensing Symposium,2016:6665-6668.
[10] Thong T Do,Lu Gan,Nam Nguyen. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C].Asilomar Conference on Signals Systems and
Computers,2009:581-587.
[11] Blumensath T,Davies M E. Stagewise Weak Gradient Pursuits[J].IEEE Transactions on Signal Processing,2009,57(11):4333-4346.
[12] Liu Z A B,Li G A,Zhang H A.SAR imaging of dominant scatterers using cascading StOMP[C].IEEE Cie International Conference on Radar,2011:1676-1679.
[13] 李珅,马彩文,李艳,等.压缩感知重构算法综述[J].红外与激光工程,2013,42(S1):225-232.
[14] Ahmad F,Amin M G,Kassam S A.Through-the-wall wideband synthetic aperture beamformer[J].IEEE Antennas and Propagation Society Symposium,2004:3059-3062.
相似文献/References:
[1]李俊潇,何培宇,崔 敖,等.一种基于压缩感知的均匀线阵频率不变波束优化方法[J].成都信息工程大学学报,2019,(06):565.[doi:10.16836/j.cnki.jcuit.2019.06.001]
LI Junxiao,HE Peiyu,CUI Ao,et al.A Uniform Linear Array Frequency Invariant Beam Optimization Method based on Compressed Sensing[J].Journal of Chengdu University of Information Technology,2019,(05):565.[doi:10.16836/j.cnki.jcuit.2019.06.001]
[2]夏朝禹,高瑜翔,郭春妮,等.CS-TWR多径模型及快速搭建方法[J].成都信息工程大学学报,2020,35(01):26.[doi:10.16836/j.cnki.jcuit.2020.01.005]
XIA Chaoyu,GAO Yuxiang,GUO Chunni,et al.CS-TWR Multipath Model and Fast Building Method[J].Journal of Chengdu University of Information Technology,2020,35(05):26.[doi:10.16836/j.cnki.jcuit.2020.01.005]
[3]杜鑫昌,高瑜翔.基于混沌压缩感知的多图像隐藏加密算法[J].成都信息工程大学学报,2022,37(05):558.[doi:10.16836/j.cnki.jcuit.2022.05.012]
DU Xinchang,GAO Yuxiang.Multi-image Hiding Encryption Algorithm based on Chaotic Compressed Sensing[J].Journal of Chengdu University of Information Technology,2022,37(05):558.[doi:10.16836/j.cnki.jcuit.2022.05.012]
备注/Memo
收稿日期:2019-03-25