LI Junxiao,HE Peiyu,CUI Ao,et al.A Uniform Linear Array Frequency Invariant Beam Optimization Method based on Compressed Sensing[J].Journal of Chengdu University of Information Technology,2019,(06):565-572.[doi:10.16836/j.cnki.jcuit.2019.06.001]
一种基于压缩感知的均匀线阵频率不变波束优化方法
- Title:
- A Uniform Linear Array Frequency Invariant Beam Optimization Method based on Compressed Sensing
- 文章编号:
- 2096-1618(2019)06-0565-08
- Keywords:
- compressed sensing; virtual array expansion; second order cone programing; frequency invariant beam optimization
- 分类号:
- TN91
- 文献标志码:
- A
- 摘要:
- 频率不变波束形成技术属于恒定束宽波束形成,能解决宽带信号中不同频率分量对应的波束响应不一致问题。针对现有的一类以均匀线阵为模型将恒定主瓣宽度作为约束条件的频率不变波束形成方法,当阵元个数确定后,形成的波束主瓣宽度和旁瓣水平往往达不到实际需求,借助压缩感知理论和阵列虚拟扩展的思想,提出一种改善波束性能的新方法。提出的方法以均匀线阵为模型,利用阵列虚拟扩展增大阵列的孔径,引入压缩感知理论(compressed sensing,CS)进行信号预处理,并利用二阶锥规划(second order cone programming,SOCP)进行频率不变波束形成。由于压缩感知的恢复算法可以对压缩采样矩阵采集的信号进行精确重构,从而达到以更少的阵元获得相同的波束形成器性能。换言之,在相同的阵元个数条件下,通过阵列虚拟扩展增大了阵列的孔径,提出的方法比基于SOCP的频率不变波束形成方法有更窄的主瓣宽度和更低的旁瓣水平,仿真结果也表明了该方法的有效性,在相关工程实践中具有一定的参考价值。
- Abstract:
- The frequency invariant beamforming technique belongs to constant beam width beamforming which can solve the problem of inconsistent beam response corresponding to different frequency components in a wideband signal. At present, most frequency invariant beamforming methods which use uniform linear array often have an invariant main lobe width as a constraint. When the number of array elements is determined, the formed beam main lobe width and side lobe level always fail to meet the actual demand. Aiming at this problem, a new method to improve beam quality is proposed by means of compressed sensing(CS)and array virtual expansion. The method uses a uniform linear array as a model, takes the array virtual expansion to amplify the bore diameter of array, uses the CS to pre-process the signal and adopts second order cone programming(SOCP)for frequency invariant beamforming. Since CS recovery algorithm can accurately reconstruct the signals acquired by the compressed sampling matrix, the same beamforming performance can be obtained with fewer array elements. In other words, after the array bore diameter’s enlargement from array virtual expansion, the method has a narrower main lobe width and lower side lobe level than the frequency invariant beamforming method based on SOCP in case of the same number of elements. The simulation results also show the effectiveness of the proposed method, which has certain reference value in related engineering practice.
参考文献/References:
[1] Krim H,Viberg M.Two decades of array signal processing research:the parametric approach[J].Signal Processing Magazine,IEEE,1996,13(4):67.
[2] 周鹤,何培宇,张勇.一种改进的虚拟阵列语音信号DOA估计算法[J].四川大学学报(自然科学版),2015,52:319.
[3] 邱月阳,何培宇,崔敖,等.基于双阵元的宽带相干信源数估计[J].四川大学学报(自然科学版),2018,55:494.
[4] Michael L,Kohno R.Ultra Wideband signals and systems in communication engineering [M].Chichester,U.K.:Wiley,2004.
[5] H L Van Trees,Optimum Array Processing,Part IV of Detection,Estimation,and Modulation Theory[M].New York:Wiley,2002.
[6] 鄢社锋,马远良.基于二阶锥规划的任意传感器阵列时域恒定束宽波束形成[J].声学学报,2005,30(4):309.
[7] Yan S,Ma Y.Design of FIR beamformer with frequency invariant patterns via jointly optimizing spatial and frequency responses[C].IEEE International Conference on Acoustics,Speech,and Signal Processing,2005.IEEE,2005,4:789.
[8] Liu W,Weiss S.Design of frequency invariant beamformers for broadband arrays[J].IEEE Transactions on Signal Processing,2008,56(2):855.
[9] 王冬霞,周城旭,韩颖,等.非均匀傅里叶变换频率不变波束形成方法[J].信号处理,2013,29(6):691.
[10] Zhao Y,Liu W.Robust fixed frequency invariant beamformer design subject to norm-bounded errors[J].Signal Processing Letters,IEEE,2013,20(2):169-172.
[11] 陈苏婷,张伟.基于SRV-CLS的稳健可控频率不变波束形成[J].系统仿真学报,2016,28(8):1898.
[12] E Candès,J Romberg,Terence Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans.on Information Theory,2006,52(2):489.
[13] Joel A.Tropp and Anna C.Gilbert.Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2007,53(12).
[14] DaiW,Milenkovic O.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory,2009,55(5):2230.
[15] Anila Satheesh B,Deepa B,Bhai Subhadra,et al.Compressive Sensing for Array Signal Processing 2012 Annual IEEE India Conference[C].Dec.2012,555.
相似文献/References:
[1]余 杰,夏朝禹,杜 江.基于CS-TWR的动态阈值贪婪算法成像研究[J].成都信息工程大学学报,2019,(05):462.[doi:10.16836/j.cnki.jcuit.2019.05.003]
YU Jie,XIA Chaoyu,DU Jiang.Imaging Research of Dynamic Threshold Greedy Algorithm based on CS-TWR[J].Journal of Chengdu University of Information Technology,2019,(06):462.[doi:10.16836/j.cnki.jcuit.2019.05.003]
[2]夏朝禹,高瑜翔,郭春妮,等.CS-TWR多径模型及快速搭建方法[J].成都信息工程大学学报,2020,35(01):26.[doi:10.16836/j.cnki.jcuit.2020.01.005]
XIA Chaoyu,GAO Yuxiang,GUO Chunni,et al.CS-TWR Multipath Model and Fast Building Method[J].Journal of Chengdu University of Information Technology,2020,35(06):26.[doi:10.16836/j.cnki.jcuit.2020.01.005]
[3]杜鑫昌,高瑜翔.基于混沌压缩感知的多图像隐藏加密算法[J].成都信息工程大学学报,2022,37(05):558.[doi:10.16836/j.cnki.jcuit.2022.05.012]
DU Xinchang,GAO Yuxiang.Multi-image Hiding Encryption Algorithm based on Chaotic Compressed Sensing[J].Journal of Chengdu University of Information Technology,2022,37(06):558.[doi:10.16836/j.cnki.jcuit.2022.05.012]
备注/Memo
收稿日期:2019-01-09基金项目:国家自然科学基金资助项目(61071159、U1733109)