LIU Ping,WANG Lei,QI Shengxiu,et al.Analysis of Precipitation Observation of Weather Phenomenon Instrument[J].Journal of Chengdu University of Information Technology,2020,35(01):104-110.[doi:10.16836/j.cnki.jcuit.2020.01.014]
天气现象仪降水观测分析
- Title:
- Analysis of Precipitation Observation of Weather Phenomenon Instrument
- 文章编号:
- 2096-1618(2020)01-0104-07
- 分类号:
- P412.13
- 文献标志码:
- A
- 摘要:
- 针对2018年四川出现的21次降水天气过程,利用四川盆地及川西高原13个地区35台降水天气现象仪滴谱数据,分析了天气现象仪降水观测。结果表明:基于天气现象仪滴谱数据计算获取大暴雨、暴雨降水量,与自动气象站测值相关系数在0.8以上,相关度较高,通过了置信度为99%的显著性检验,大暴雨、暴雨天气现象的观测是可行的,但81.8%过程降水量的绝对偏差和相对偏差都较大。计算获取小雨到大雨降水量,与自动气象站测值相关系数在0.95以上,绝对偏差也较小,表现出降水时间点、降水强度时间点、日最大降水强度、过程持续时间以及变化趋势的观测十分吻合,大雨到小雨天气现象的观测是可靠的,但过程降水量相对偏差依然较大。同时,低温降水过程(温度<2 ℃),一些站过程降水量相对偏差出现异常,经数据质量控制,仍然存在大粒径、小粒速的粒子,很难从正常雨滴中分离出来,此类降水过程伴有降雪的可能性较大,因此,通过天气现象仪滴谱数据计算获取的此类型降水量或等效降水量不可信。
- Abstract:
- Based on the drop spectrum data of 35 precipitation weather phenomenon instrument in 13 regions of Sichuan Basin and Western Sichuan Plateau, the analysis of precipitation observation of weather phenomenon instrument is according to the 21 precipitation weather processes in Sichuan of 2018. The results show that the correlation coefficient between the rainstorm or heavy rainstorm precipitation calculated by using the drop spectrum data of the weather phenomenon instrument and the correlation is high because the measured value of the ground automatic station is above 0.8. It has passed the significance test with a confidence of 99%,so it is feasible to observe rainstorm weather phenomenon, however, the absolute and relative errors of 81.8% precipitation are relatively large.And the correlation coefficient between the light rain or heavy rain precipitation calculated by using the drop spectrum data of the weather phenomenon instrument and the measured value of the ground automatic station is above 0.95, so the absolute errors is relatively small. The precipitation time, precipitation intensity time, maximum daily precipitation intensity, process duration and change trend are in good agreement with the observation. The observation of weather phenomenon instrument of heavy rain and light rain is reliable, but the relative deviation is still large. At the same time,for the low temperature precipitation process(temperature <2 ℃), the relative deviation of precipitation in some stations is abnormal. After data quality control, there are still particles with large size and low velocity, which are difficult to be separated from normal raindrops. Such precipitation process is likely to be accompanied by snowfall. Therefore, the precipitation or equivalent precipitation of this type obtained through drop spectrum data cannot be trusted.
参考文献/References:
[1] 中国气象局GB/T 35237-2017地面气象观测规范天气现象[S].
[2] 中国气象局.地面气象观测规范[M ].北京:气象出版社,2003.
[3] 马舒庆,吴可军,陈冬冬,等.天气现象自动化观测系统设计[J].气象,2011,37(9):1166-1172.
[4] 方海涛,张世国,汪玮,等.降水类天气现象仪检测实验室设计与实现[J].电子测量技术,2018,41(19):22-27.
[5] 吴亚昊,周筠珺,刘黎平.雨滴谱的变化对降水估计的影响 [J].成都信息工程学院学报,2015,30(1):88-95.
[6] 栾天,郭学良,张天航,等.不同降水强度对PM2.5的清除作用及影响因素[J].应用气象学报,2019,(3):279-291.
[7] 赵震,雷恒池,陈渭民.两种不同雨滴谱分布的分析[J].南京气象学院学报,2005,28(1):138-143.
[8] 李慧,银燕,单云鹏,等.黄山层状云和对流云降水不同高度的雨滴谱统计特征分析[J].大气科学,2018,42(2):268-280.
[9] 杜波,张雪芬,胡树贞,等.天气现象仪自动化观测资料对比分析[J].气象科技,2014,42(4):617-623.
[10] 杨宁,张晋,刘钧.雨滴谱式降水现象仪降水类型判定算法优化探究[J].气象科技进展,2018,8(6):89-94.
[11] 苗少宝,陆亦怀,桂华侨,等.激光雨滴谱仪降水量反演及误差修正[J].大气与环境光学学报,2011,6(6):423-431.
[12] 李淘,阮征,葛润生,等.激光雨滴谱仪测速误差对雨滴谱分布的影响[J].应用气象学报,2016,(1):25-34.
[13] BaoJun Chen,Jun Wang, Dianli GongRaindrop Size Distribution in a Midlatitude Continental Squall Line Measured by Thies Optical Disdrometers over East China[J].Journal of Applied Meteorology and Climatlogy.55,620-634, 10.1175/JAMC-D-15-0127.1.
[14] Baojun Chen,Zhiqun Hu,Liping Liu,et al.Raindrop Size Distribution Measurements at 4,500 m on the Tibetan Plateau During TIPEX-III a[J]. Journal of Geophysical Research:Atmospheres.2017.
[15] 宫福久,刘吉成,李子华.三类降水云雨滴谱特征研究[J].大气科学,1997,21(5):607-614.
[16] 濮江平,张伟,姜爱军,等.利用激光降水粒子谱仪研究雨滴谱分布特性[J].气象科学,2010,30(5):701-707.
[17] 郑娇恒,陈宝君.雨滴谱分布函数的选择:M-P和Gamma分布的对比研究[J].气象科学,2007,27(1):17-25.
[18] 中国国家标准化管理委员会,GB/T28592-2012降水量等级[S].
[19] 张宁,江志红,吴立广.江苏省自动站与基础站降水观测资料质量分析[J].南京气象学院学报,2010,33(5):606-614.
[20] 连志鸾.自动站与人工站观测记录的差异分析[J].气象,2005,31(3):48-52.
[21] 柳臣中,周筠珺,谷娟,.成都地区雨滴谱特征[J].应用气象学报,2015,26(1):112-121.
[22] 四川省气候中心.四川省气候专题分析[R].
[23] 胡子浩,濮江平,张欢,等.Parsivel激光雨滴谱仪观测较强降水的可行性分析和建议[J].气象科学,2014,34(1):25-31.
备注/Memo
收稿日期:2019-07-15基金项目:四川省科技厅重大科技专项资助项目(19ZDYF0738); 高原与盆地暴雨旱涝灾害四川省重点实验室科技发展基金资助项目(2018-重点-13)