BAO Yangwanying,JIANG Yu,LI Dong.Type-2 Fuzzy Set based Rough Fuzzy C-means Clustering Algorithm[J].Journal of Chengdu University of Information Technology,2020,35(04):406-411.[doi:10.16836/j.cnki.jcuit.2020.04.007]
基于2型模糊集的粗糙模糊C-means算法
- Title:
- Type-2 Fuzzy Set based Rough Fuzzy C-means Clustering Algorithm
- 文章编号:
- 2096-1618(2020)04-0406-06
- 关键词:
- 聚类; 粗糙集; 2型模糊集; 粗糙模糊C-means
- Keywords:
- clustering; rough set; type-2 fuzzy set; rough fuzzy C-means
- 分类号:
- TP301.6
- 文献标志码:
- A
- 摘要:
- 聚类算法在图像处理、模式识别等领域有广泛应用,粗糙模糊C-means算法是近年来研究较多的聚类算法。在面对聚类结构不同的样本时,传统的粗糙模糊C-means算法存在聚类簇心偏向性和隶属度选取的问题,使聚类结果不理想。提出一种基于2型模糊集的粗糙模糊C-means算法,算法采用2型模糊集理论,计算样本的次隶属度,从而描述样本的深层信息,根据样本最大隶属度和次大隶属度之间的差别,将样本划分到类簇的上下近似集中,根据上下近似集的权重,迭代并重新计算簇心,直到达到设定阈值或者满足算法终止条件。将改进的粗糙模糊C-means算法在人工数据集和UCI数据集上进行实验对比,结果表明改进的粗糙模糊C-means算法具有良好的性能
- Abstract:
- Clustering algorithm is widely used in image processing, pattern recognition and other fields. The RFCM algorithm is a clustering algorithm that has been studied more in recent years. When the clustering structure of sample is different, the traditional RFCM algorithm has the problem of cluster center bias and membership selection,which makes the clustering result worse. This paper proposes a RFCM C-means algorithm based on type-2 fuzzy set. The refined RFCM algorithm uses the type-2 fuzzy set theory to describe the deep information of the sample by calculating the sub-degree of membership of the sample. The sample is divided into the upper and lower approximation sets of the cluster based on the difference between the maximum membership degree and the second-largest membership degree, and according to the weights of the upper and lower approximation sets, the cluster center is iterated and recalculated until the set threshold is reached or the algorithm termination condition is met., The performances of improved RFCM C-means algorithm experimented on the artificial datasets and the UCI datasets are compared, the results show that the improved RFCM algorithm has good performance
参考文献/References:
[1] 贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13.
[2] 王学恩,韩德强,韩崇昭.采用不确定性度量的粗糙模糊C均值聚类参数获取方法[J].西安交通大学学报,2013,47(6):55-60.
[3] Lingras P,Yan R,Jain A.Clustering of Web Users:K-Means vs.Fuzzy C-Means[C].Proceedings of the 1st Indian International Conference on Artificial Intelligence,IICAI 2003,Hyderabad,India,December 18-20,2003.DBLP,2003.
[4] Lingras P,West C.Comparison of Conventional and Rough K-Means Clustering[C].International Workshop on Rough Sets.2003.
[5] Mitra S,Banka H,Pedrycz W.Rough-Fuzzy Collaborative Clustering[J].IEEE Transactions on Systems Man & Cybernetics Part B,2006,36(4):795-805.
[6] MajiP, Pal S K.RFCM:A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets[J].2007.
[7] Tripathy B K,Sobti S,Shah V.A Refined Rough Fuzzy Clustering Algorithm[C].IEEE International Conference on Computational Intelligence & Computing Research.IEEE,2015.
[8] Jiao S,Yu L,Ying Z,et al.Enhanced rough-fuzzy C-means algorithm with strict rough sets properties[J].Applied Soft Computing,2016,46:827-850.
[9] Sukhveer,SINGH,Harish,et al.Comments on “Some new distance measures for type-2 fuzzy sets and distance measure based ranking for group decision making problems”[J].Frontiers of Computer Science,2018,12(2):396-400.
[10] Zhou K,Yang S.Effect of cluster size distribution on clustering: a comparative study of K-means and fuzzy C-means clustering[J].Pattern Analysis and Applications,2019:1-12.
[11] Begum SA,Devi O M,Begum S A,et al.A Rough Type-2 Fuzzy Clustering Algorithm for MR Image Segmentation[J].International Journal of Computer Applications,2013,54(4):4-11.
[12] Davies D L,Bouldin D W.A Cluster Separation Measure[J].IEEE Trans Pattern Anal MachIntell,1979(2):224-227.
[13] Dunn J C.A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-separated Clusters[J].Journal of Cybernetics,1973,3(3):32-57.
相似文献/References:
[1]曾庆喜,彭 辉.基于ResNeXt-GRU和聚类采样的人体行为识别[J].成都信息工程大学学报,2022,37(01):40.[doi:10.16836/j.cnki.jcuit.2022.01.007]
ZENG Qingxi,PENG Hui.Human Behavior Recognition based on ResNeXt-GRU and Cluster Sampling[J].Journal of Chengdu University of Information Technology,2022,37(04):40.[doi:10.16836/j.cnki.jcuit.2022.01.007]
备注/Memo
收稿日期:2020-02-13
基金项目:国家重点研发计划资助项目(2018YFC0809500); 四川省科技计划资助项目(2019YFH0034)