CHEN Siqi,XUE Yajuan,YANG Qingmi,et al.Denoising and Reconstruction of Seismic Signals based on K-SVD under the MCA Framework[J].Journal of Chengdu University of Information Technology,2021,36(01):7-14.[doi:10.16836/j.cnki.jcuit.2021.01.002]
MCA框架下K-SVD构建字典对地震信号去噪与重建
- Title:
- Denoising and Reconstruction of Seismic Signals based on K-SVD under the MCA Framework
- 文章编号:
- 2096-1618(2021)01-0007-08
- Keywords:
- seismic data; compressed sensing; K-singular value decomposition(K-SVD); morphometric principal components analysis(MCA); redundant dictionary
- 分类号:
- TN911.4
- 文献标志码:
- A
- 摘要:
- 针对由于地震信号采集环境的复杂性带来的采样信号不完整,存在大量噪声等情况,对采集的叠前地震信号进行去噪和重建。在传统的K-奇异值分解(K-singular value decomposition,K-SVD)建造冗余字典的压缩感知重建的基础上,提出了基于形态分量分析(morphometric principal components analysis,MCA)的K-SVD地震信号的去噪与重建。即使用MCA对地震信号的结构和平滑部分进行分类,并针对上述两种类别分别构建由K-SVD算法计算的冗余字典,将两种类别分别置于不同字典中进行去噪与重建。与传统的方法相比,该方法在减少了地震信号采集的成本和难度的基础上,精确辨别地震信号细节,并取得良好的去噪效果。
- Abstract:
- For the incompleteness of sample signal due to the complexity of seismic signal collection environment,and quantities of noise.Therefore, before analyzing it, we need to denoise and reconstruct the pre-stack seismic data.On the basis of building the compress sensing reconstruction of redundant dictionaries by traditional K-singular value decomposition(K-SVD), we propose the K-SVD seismic signal denoise and reconstruction combined with morphometric principalcomponents analysis(MCA). It realizes that we use MCA to classify the structure and smooth part of the seismic signal. And build redundant dictionaries calculated by the K-singular value decomposition for the above two parts, respectively. Finally, the two parts are placed in different dictionaries for denoising and reconstruction. Compared with the traditional method, this method reduces the cost and difficulty of seismic data acquisition, accurately discriminates signal details, and achieves good denoising effect.
参考文献/References:
[1] 石战战,夏艳晴,王元君,等.基于L_1-L_1范数稀疏表示的共偏移距道集地震数据重建方法[J].地球物理学进展,2019,34(5):1893-1899.
[2] Serdyukov A,Yablokov A,Duchkov,et al.Slant f-k transform of multichannel seismic surface wave data[J].Geophysics,2019,84(1):A19-A24.
[3] 杨海涛,贺振华,陈丹,等.转换波静校正技术在四川地区的应用研究[J].地球物理学进展,2017,32(4):1701-1704.
[4] 池越,丁木,周亚同,等.地震信号的Landweber迭代傅里叶快速重建[J].煤炭学报,2018,43(9):2562-2569.
[5] Tonegawa T,Nishida K,Watanabe T,et al.Seismic interferometry of teleseicmic S-wave coda for retrieval of body waves:An application to the Philippine Sea slab underneath the Japanese Islands[J].Geophysical Journal International,2018,178(3):1574-1586.
[6] 舒国旭,吕公河,吕尧,等.基于压缩感知的地震数据重建[J].石油物探,2018,57(4):66-71.
[7] 曹慧慧.压缩感知方法在地震数据中的应用探讨[D].成都:西南石油大学,2018.
[8] 弓震,宋维琪.基于K-SVD字典学习方法的微地震去噪[Z].中国石油学会2019年物探技术研讨会,2019.
[9] 张良,韩立国,许德鑫,等.基于压缩感知技术的Shearlet变换重建地震数据[J].石油地球物理勘探,2017(2):8-42.
[10] 程时俊,韩立国,于江龙,等.基于改进K-SVD字典学习方法的地震数据去噪[J].世界地质,2018,37(2):627-634.
[11] 黄翔.基于EMD重构地震信号的去噪方法[J].油气地球物理,2017,15(2):18-23.
[12] Jawad S,IM Qi.Reconstruction of Sparse Signals and Compressively Sampled Images Based on Smooth l 1-Norm Approximation[J].Journal of Signal Processing Systems,2017,88(3).
[13] FU Jun,YUAN Haikou,ZHAO Rongqiang,et al.Clustering K-SVD for sparse representation of images[J].EURASIP Journal on Advances in Signal Processing,2019(1).
[14] 胡平平.基于形态分量分析的图像融合算法研究[D].北京:北京交通大学,2019.
[15] 江萍,张凯,张医奎,等.基于形态分量分析的含噪地震数据重建方法[J].地球物理学进展,2019,34(2):573-580.
[16] 张凯,张医奎,李振,等.MCA框架下Shearlet和DCT字典组合地震数据重建[J].石油地球物理勘探,2019.54(5):1005-1013.
相似文献/References:
[1]喻伟闯,何培宇,徐自励,等.稀疏阵列方向不变恒定束宽波束形成优化方法[J].成都信息工程大学学报,2020,35(04):367.[doi:10.16836/j.cnki.jcuit.2020.04.001]
YU Weichuang,HE Peiyu,XU Zili,et al.Optimization Method of Sparse Array Steering-invariant Constant Beamwidth Beamforming[J].Journal of Chengdu University of Information Technology,2020,35(01):367.[doi:10.16836/j.cnki.jcuit.2020.04.001]
[2]夏朝禹,高瑜翔,谢建峰,等.基于约束条件的广义正交匹配追踪CS雷达成像算法[J].成都信息工程大学学报,2020,35(04):400.[doi:10.16836/j.cnki.jcuit.2020.04.006]
XIA Chaoyu,GAO Yuxiang,XIE Jianfeng,et al.Generalized Orthogonal Matching Pursuit CS Radar Imaging based on Constraints[J].Journal of Chengdu University of Information Technology,2020,35(01):400.[doi:10.16836/j.cnki.jcuit.2020.04.006]
[3]张浩东,周 娟.基于DFT-SWOMP的OFDM系统信道估计方法[J].成都信息工程大学学报,2024,39(04):436.[doi:10.16836/j.cnki.jcuit.2024.04.007]
ZHANG Haodong,ZHOU Juan.Channel Estimation Method for OFDM System based on DFT-SWOMP[J].Journal of Chengdu University of Information Technology,2024,39(01):436.[doi:10.16836/j.cnki.jcuit.2024.04.007]
备注/Memo
收稿日期:2019-04-23
基金项目:四川省杰出青年学术技术带头人资助项目(2016JQ0012)