XIONG Rong,CHEN Changming,LI Na,et al.A CMOS Dual-band Low Noise Amplifier Design with Source Barron[J].Journal of Chengdu University of Information Technology,2021,36(04):396-399.[doi:10.16836/j.cnki.jcuit.2021.04.008]
一种含有源巴伦CMOS双频低噪声放大器的设计
- Title:
- A CMOS Dual-band Low Noise Amplifier Design with Source Barron
- 文章编号:
- 2096-1618(2021)04-0396-04
- Keywords:
- CMOS; dual channel; active Barron; low power consumption
- 分类号:
- TN722.3
- 文献标志码:
- A
- 摘要:
- 设计了一种可用于北斗B1/B2频段带有源巴伦的可切换双通道CMOS低噪声放大器。为了实现不同频率的切换,使用开关管改变输入阻抗匹配。输出端采用一种有源巴伦技术,在降低芯片功耗和面积的同时将单端输入信号转变为差分输出信号。使用Cadence Spectre RF基于SMIC 0.13 μm 1P6M RF CMOS工艺下进行仿真。结果显示,在1.2 V工作电压下,当输入信号为1.56 GHz时,LNA的增益、噪声系数和偏置电流分别为19.77 dB、1.13 dB和1 mA; 当输入信号为1.2 GHz时,LNA的增益、噪声系数和偏置电流分别为27.43 dB、2.11 dB和1 mA,功耗约为1.8 mW。
- Abstract:
- A switchable dual-channel CMOS low noise amplifier with source Baron for Beidou B1/B2 frequency band is designed.In order to achieve different frequency switching, switch tube is used to change the input impedance matching.The output terminal adopts an active Barron technology to transform the single-terminal input signal into differential output signal while reducing the power and area of the chip.Cadence Spectre RF was used for simulation based on SMIC 0.13 um 1P6M RF CMOS process.The results show that LNA gain, noise coefficient and bias current are 19.77 dB,1.13 dB and 1 mA respectively when the input signal is 1.56 GHz at 1.2 V working voltage.At 1.2 GHz, LNA’s gain, noise coefficient and bias current are 27.43 dB,2.11 dB and 1 mA respectively, and its power consumption is about 1.8 mW.
参考文献/References:
[1] 李冬航.“北斗+”融合创新与“+北斗”时空应用[J].卫星应用,2020(7):32-36.
[2] 李兵,庄奕琪,龙强.一种CMOS卫星导航接收机多模低噪声放大器设计[J].电路与系统学报,2012,17(5):42-47.
[3] Sanghoon J,Choi T Y,UngKin J Y,et al.A 3-to-5 GHz UWB LNA with a low-power balunced activebalun[J].IEEE Radio Frequency Integrated CircuitsSymposium.2009(2):303-306.
[4] 陈晓飞,李小晶,邹雪城,等.带有源巴伦的CMOS宽带低噪声放大器设计[J].华中科技大学学报(自然科学版),2013,41(5):45-47+51.
[5] 尹强,黄海生,曹新亮,等.CMOS射频前端LNA的设计[J].电子元件与材料,2018,37(6):68-72.
[6] 祁赓,黄海生,李鑫,等.基于TSMC 0.18 μm RF CMOS工艺的1.2 GHz LNA的设计和仿真[J].电子元件与材料,2019,38(12):84-88+94.
[7] 蒋证东. 硅基微波毫米波放大器集成电路研究[D].成都:电子科技大学,2019.
[8] Lee T H.CMOS射频集成电路设计[M].余志平, 周润德, 译.北京:电子工业出版社, 2012:280-307.
[9] 唐江波, 王宁章, 卢安栋, 等.一种高增益低功耗CMOS LNA设计[J].通信技术, 2011, 44(4):175-177.
[10] Razavi B.RF Microelectronics[M]. 北京:机械工业出版社.2017:135-142.
[11] X Yu,N M Neihart.Analysis and Design of a Reconfigurable Multimode Low-Noise Amplifier Utilizing a Multitap Transformer[J].IEEE Trans. Microw. Theory Techn.,2013,61(3):1236-1246.
[12] N M Neihart,J Brown,X Yu.A dual-band 2.45/6 GHz CMOS LNA utilizing a dual-resonant transformer-based matching network[J].IEEE Trans. Circuits Syst. I, Reg. Papers,2012,59(8):1743-1751.
[13] T Kitano,K Komoku,T Morishita,et al.A CMOS LNA equipped with concurrent dual-band matching networks[J].in Proc. IEEE Asia Pacific Microw. Conf.(APMC),2017(11):566-569.
[14] 武振宇,马成炎,叶甜春,庄海孝.一种可切换的双频段CMOS低噪声放大器[J].微电子学,2010,40(2):217-221.
[15] Singh R,Slovin G,Xu M,et al.A reconfigurable dual-frequency narrowband CMOS LNA using phase-change RF switch[J].IEEE Trans Microwave Theo& Tech,2017,65(11):4689-4702.
备注/Memo
收稿日期:2020-12-02