CHEN Yanqiu,YANG Guangchong.Numerical Simulation of Lotka-Volterra Competition Model with Diffusion Terms[J].Journal of Chengdu University of Information Technology,2021,36(05):564-569.[doi:10.16836/j.cnki.jcuit.2021.05.015]
含扩散项Lotka-Volterra竞争模型的数值模拟
- Title:
- Numerical Simulation of Lotka-Volterra Competition Model with Diffusion Terms
- 文章编号:
- 2096-1618(2021)05-0564-06
- 关键词:
- Lotka-Volterra竞争模型; 有限差分法; 近似解; 数值模拟
- Keywords:
- Lotka-Volterra competition model; finite difference method; approximate solution; numerical simulation
- 分类号:
- O29
- 文献标志码:
- A
- 摘要:
- Lotka-Volterra竞争模型是研究种群关系的重要模型之一,要求它的解是很困难的。通过有限差分法,研究一个带有扩散项Lotka-Volterra系统的近似解,并利用Matlab软件绘制该模型中两种群的图像。通过改变种群的固有增长率,将所得的两个种群的图像进行对比,清晰地反映出两个种群的变化情况。在使用有限差分法对模型进行数值模拟时,克服了非线性问题带来的困难。
- Abstract:
- Lotka-Volterra competition model is one of the most important models to study population relationship,and it is very difficult to seek its solutions. In this paper, the finite difference method is used to study approximate solution of a Lotka-Volterra reaction-diffusion system, and the images of two-competing species in the model are drawn by the Matlab. By changing the inherent growth rate of the population, we compare the changes in population density of two populations, which clearly reflects the mutual influence between the two populations. In the use of finite difference method, the difficulty of nonlinearity involved in the competition model is overcome.
参考文献/References:
[1] Malthus T.An Essay on the principle of poplation[M].LOIUDON:Penguin Books harmondsword,1798.
[2] 马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社,1996.
[3] 陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社,1985.
[4] Volterra V.Variations and fluctuations of the number of individuals in animal species living together[J].Journal Du Conseil,1928,3(1):3-51.
[5] 陆志奇.竞争数学模型的理论研究[M].北京:科学出版社,2008.
[6] Laham M F,Krishnarajah I S,Shariff J M.Fish Harvesting Management Strategies Using Logistic Growth Model[J].Sains Malaysiana,2012,41:171-177.
[7] 陈霞,肖岚.Logistic模型的改进与中国人口预测[J].成都信息工程大学学报,2020,35(2):239-243.
[8] Alfred DACI.Fish Harvesting Models and Their Applications in a Reservoir in Sanrada Albania[J].JMEST,2016,3:5279-5282.
[9] Lan K Q,Lin W.Population models with quasi-constant-yield harvest rates[J].Mathematical Biosciences & Engineering,2017,14(2):467-490.
[10] Yang G C,Chen X,Xiao L.Local Approximate Solutions of A Class of Nonlinear Diffusion Population Models[J].Nonlinear Functional Analysis and Applications,2021,26(1):83-92.
[11] 刘钦磐.Lotka-Volterra竞争模型的长时间渐近行为数值研究[D].哈尔滨:哈尔滨工程大学,2018.
[12] Yamada Y.Positive solutions for Lotka–Volterra competition system with diffusion[J].Nonlinear Analysis:Theory,Methods & Applications,2001,47(9):6085-6096.
[13] 熊彬,阮百尧.MATLAB在有限差分法中的应用[J].桂林工学院学报,2001(2):104-109.
备注/Memo
收稿日期:2021-07-07
基金项目:四川省科技计划资助项目(2018JY0169)