HU Shibing.Design of Frequency Sampling Method based Linear Phase Non-recursive Digital Filters Using Differential Evolution Algorithm[J].Journal of Chengdu University of Information Technology,2022,37(02):148-154.[doi:10.16836/j.cnki.jcuit.2022.02.006]
应用差分进化算法的频率抽样法线性相位非递归数字滤波器设计
- Title:
- Design of Frequency Sampling Method based Linear Phase Non-recursive Digital Filters Using Differential Evolution Algorithm
- 文章编号:
- 2096-1618(2022)02-0148-07
- Keywords:
- differential evolution algorithm; frequency sampling method; linear phase; non-recursive digital filters; objective fitness function; optimization design
- 分类号:
- TN911.72; TN911.1
- 文献标志码:
- A
- 摘要:
- 滤波器过渡带最佳抽样点值的确定是频率抽样法非递归数字滤波器设计的关键,提出一种应用差分进化算法的频率抽样法线性相位非递归数字滤波器的优化设计方法。首先推导频率抽样法线性相位非递归数字滤波器的设计公式,并分析滤波器频率响应的误差特征。然后以滤波器过渡带样本值为优化变量,以阻带性能指标设计目标适应度函数,利用差分进化算法的全局性和内在并行性搜索最优解,并给出算法实现的具体步骤和实验结果。实验数据表明:采用差分进化算法确定的频率过渡带样点值是最优的,设计的非递归数字滤波器的通带最大衰减和阻带最小衰减分别达到0.2234 dB和66.6637 dB,频率特性优于传统设计方法。
- Abstract:
- How to determine the optimal sampling point value of the filter transition band samples is a key problem in the design of non-recursive digital filters based on frequency sampling method(FSM). In this paper, an optimaloptimization design method using differential evolution algorithm(DEA)for FSM-based linear phase non-recursive digital filters is proposed. First of all, the design formulae of linear phase non-recursive digital filters based on FSM are derived, and the error features of the frequency responses of the designed filters are analyzed. And then the value of the transition band samples is utilized as the variable to be optimized, the objective fitness function is designed with the stopband performance specification, and the optimal solution is searched out by taking advantage of the globality and the intrinsic parallelism of DEA. Finally, the concrete steps and experimental results of the algorithm are presented. The experimental data show that the value of the frequency transition band samples determined by DEA is optimal, and the maximum passband attenuation and the stopband minimum stopband attenuation of the designed non-recursive digital filters can reach 0.2234 dB and 66.6637 dB respectively, which are superior to other traditional design methods.
参考文献/References:
[1] M B Joaquim,C A S Lucietto.A nearly optimum linear-phase digital FIR filters design[J].Digital Signal Processing,2011,21(6):690-693.
[2] S M Bozic.Relationships between impulse responses of non-recursive digital filters [J].International Journal of Electronics,2007,45(2):187-191.
[3] Yunlang Xu,Xiaofeng Yang,Zhile Yang, et al.An enhanced differential evolution algorithm with a new oppositional-mutual learning strategy[J].Neurocomputing,2021,435:162-175.
[4] Zhiping Tan,Kangshun Li,Yi Wang. Differential evolution with adaptive mutation strategy based on fitness landscape analysis [J].Information Sciences,2021,549:142-163.
[5] 夏莘媛,刘伯颖,李洋,等.一种改进的差分进化算法及其应用[J].河北工业大学学报,2015,44(1):12-17.
[6] Xuewen Xia,Ling Gui,Yinglong Zhang,et al.A Fitness-Based Adaptive Differential Evolution Algorithm[J].Information sciences,2021,549:116-141.
[7] 邹娟,贾世杰,曾洁.基于遗传算法的FIR滤波器设计[J].大连交通大学学报,2010,31(4):22-25.
[8] 朱凤杰,焦瑞莉.基于遗传算法的全频带优化FIR低通滤波器设计[J].北京信息科技大学学报,2018,33(4):29-32.
[9] 孙田雨,史峥.采用改进遗传算法优化FIR数字滤波器设计[J].计算机工程与应用,2017,53(17):108-111.
[10] 吴文亮.改进的遗传算法在FIR滤波器设计中的应用研究[J].南通航运职业技术学院学报,2015,14(4):54-58.
[11] 王波,胡军台,张克勇,等.基于解空间定向优化的改进免疫算法研究及应用[J].火力与指挥控制,2020,45(12):64-67.
[12] 孙超,李明,陶海红.一种基于梯度免疫算法的参差MTI滤波器设计[J].中国电子科学研究院学报,2014,9(2):199-203.
[13] 胡鑫楠.基于改进型混沌粒子群优化算法的FIR高通数字滤波器设计[J].计算机科学,2019,46(S1):601-604.
[14] 王萍.求解非线性约束优化问题的进化规划算法[J].牡丹江师范学院学报(自然科学版),2015(1):7-8.
[15] 张俊杰,仰继连.蚂蚁算法在FIR数字滤波器优化设计中的参数[J].数据采集与处理,2013,28(3):336-341.
[16] 高西全,丁玉美.数字信号处理(第四版)[M].西安:西安电子科技大学出版社,2016:508-509.
相似文献/References:
[1]李 强,余贞侠.基于差分进化算法的射影重建[J].成都信息工程大学学报,2016,(增刊1):18.
备注/Memo
收稿日期:2021-06-03
基金项目:四川省大学生创新创业训练计划资助项目(201610621061)