WANG Min,WAGN Maocui,ZHAGN Shiguo,et al.Evaluation and Application of Measurement Uncertainty of Calibration Results of Temperature Sensors for Meteorological Applications[J].Journal of Chengdu University of Information Technology,2022,37(04):406-411.[doi:10.16836/j.cnki.jcuit.2022.04.008]
气象用温度传感器检定结果的测量不确定度评定与应用
- Title:
- Evaluation and Application of Measurement Uncertainty of Calibration Results of Temperature Sensors for Meteorological Applications
- 文章编号:
- 2096-1618(2022)04-0406-06
- Keywords:
- temperature sensor; measurement uncertainty; second standard platinum resistance thermometer; international temperature scale of 1990
- 分类号:
- TP212.9
- 文献标志码:
- A
- 摘要:
- 基于二等铂电阻温度计标准装置,以气象用铂电阻温度传感器为例,详细介绍了温度传感器检定结果的测量不确定度评定方法。通过建立温度传感器的测量模型,分析了测量不确定度来源,展示了各测量不确定度分量的评定过程。结果表明:采用二等铂电阻温度计标准装置检定时,温度传感器检定结果的扩展不确定度U=0.03(k=2)。各不确定度分量中,恒温槽波动性引入的标准不确定度为0.012 ℃,电阻测量仪器引入的标准不确定度分量为0.010 ℃,计量标准器引入的标准不确定度为0.004 ℃。
- Abstract:
- Measurement uncertainty is one of the important indexes to evaluate the quality of measurement. Based on the standard device of second-class platinum resistance thermometer, this paper takes the platinum resistance temperature sensor for meteorological application as an example, and introduces in detail the evaluation method of the measurement uncertainty of the verification results of the temperature sensor. By establishing the measurement model of temperature sensor, the source of measurement uncertainty is analyzed, and the evaluation process of each measurement uncertainty component is shown. The results show that the extended uncertainty of the verification results of temperature sensor is u=0.03(k=2)when calibrated with the second-class platinum resistance thermometer standard device. Among the uncertainty components, the standard uncertainty introduced by the fluctuation of the constant temperature tank is 0.012 ℃, the standard uncertainty component introduced by the resistance measuring instrument is 0.010 ℃, and the standard uncertainty introduced by the measuring standard is 0.004 ℃.
参考文献/References:
[1] 沈玉亮,张元刚,陆斌,等.DZZ3型自动气象站一次地温数据异常的处理过程[J].成都信息工程学院学报,2018,33(2):149-154.
[2] 赵旭,邵长亮,迟晓珠,等.自动气象站温度传感器检定方法改进研究[J].气象与环境学报,2015,31(5):179-183.
[3] 龚熙,曾涛,李中华,等.铂电阻温度传感器现场检定的干扰故障及处理方法[J].成都信息工程学院学报,2018,33(2):160-163.
[4] 姜平,刘晓冉,廖代强,等.重庆城市不同下垫面温度的多时间尺度变化特征[J].气象科技,2019,47(4):639-647.
[5] 詹万志,陈佳,宋雯雯.近56年遂宁市气温变化特征及成因分析[J].成都信息工程学院学报,2018,33(5):585-591.
[6] 杨倩,陈权亮,陈朝平,等.全球变暖背景下青藏高原中东部地区温度变化特征[J].2020,35(3):352-358.
[7] 翟建才,翟羽,蒋洪,等.测量不确定度的评价和实验室质量控制[J].现代科学仪器,2007(2):95-97.
[8] 袁帅,韩啸,李建宇.Pt100型铂电阻温度传感器测量结果不确定度评定[J].科技风,2018(27):190.
[9] 刘宇,张佳佳,刘文忠,等.铂电阻地温传感器检定不确定度评定[J].气象科技,2016,44(5):728-732.
[10] 龚熙,曾涛,王延东,等.铂电阻温度传感器现场检定和实验室检定不确定度评定比对分析[J].气象科技,2020,48(1):76-80.
[11] 李潇云,颜鹏津,屠华.基于非平衡电桥的铂电阻温度特性研究[J].河南教育学院学报(自然科学版),2012,21(4):20-22.
[12] 杨德全.ITS-90,1990年国际实用温标[J].海洋通报,1990,9(3).
[13] 廖军,杜定旭.ITS-90标准铂电阻温度计的计算问题[J].四川大学学报(自然科学版),1994,31(3):404-407.
[14] JJG160-2007,标准铂电阻温度计检定规程[S].北京:中国计量出版社,2007.
[15] JJF1059.1-2012,测量不确定度的评定与表示[S].
[16] JJG(气象)002-2015,自动气象站铂电阻温度传感器[S].
[17] 刘园园,杨健,赵希勇,等.GUM法和MCM法评定测量不确定度对比分析[J].计量学报,2018,39(1):135-139.
[18] 李金海.误差理论与测量不确定度评定[M].北京:中国计量出版社,2007:108-158.
相似文献/References:
[1]宋登明,陈 祝.一种高性能CMOS温度传感器[J].成都信息工程大学学报,2019,(01):17.[doi:10.16836/j.cnki.jcuit.2019.01.004]
SONG Dengming,CHEN Zhu.A High-performance CMOS Temperature Sensor Source[J].Journal of Chengdu University of Information Technology,2019,(04):17.[doi:10.16836/j.cnki.jcuit.2019.01.004]
备注/Memo
收稿日期:2021-09-18
基金项目:安徽省中央引导地方科技发展专项基金资助项目(YDZ X20183400004206)